Автор Алиса задал вопрос в разделе Естественные науки
Объясни че такое Базис простым языком и получил лучший ответ
Ответ от Aleksandr Ivanov[активный]
грубо говоря это система осей икс-игрек-зет, расположенной произвольно в пространстве, с помощью которой мы можем представить любой вектор как координаты на этих осях например (2;7;0) и т. д... потом добавятся преобразование матриц и подобная ерунда, в этом и применение
Ответ от Ѕару[гуру]
Базис - это и есть множество векторов в векторном пространстве. Только не любое множество векторов может быть базисом. В базисе не должно быть таких векторов, которые можно выразить через другие вектора базиса. Причем, в базисе должно быть достаточно векторов для того, что бы через них выразить любой вектор пространства.
Мой совет. В математике нужно включать воображение.
Базис - это и есть множество векторов в векторном пространстве. Только не любое множество векторов может быть базисом. В базисе не должно быть таких векторов, которые можно выразить через другие вектора базиса. Причем, в базисе должно быть достаточно векторов для того, что бы через них выразить любой вектор пространства.
Мой совет. В математике нужно включать воображение.
Ответ от Ёергей Гаврилов[гуру]
Мне нравится, что мы с тобой прямо сразу на "ты". Здесь виден намек на нечто большее.
Любое пространство это множество элементов (только упорядоченных определенным образом) . Векторное пространство упорядочено алгебраически (это значит, что в нем заданы операции сложения и умножения на число) . Его элементы можно назвать векторами. А можно и не называть.
Пусть в этом пространстве заданы некоторые особые векторы. Такие, что любой вообще вектор может быть записан линейной комбинацией этих особых. "Базис" это другое название для системы этих особых векторов.
К примеру, на плоскости любые два геометрических вектора (если только они не параллельны) образуют базис. Любой третий вектор может быть образован из этих двух, их только нужно умножить на подходящие коэффициенты и сложить по правилу параллелограмма. Эти коэффициенты будут "координатами" вектора в данном базисе.
Мне нравится, что мы с тобой прямо сразу на "ты". Здесь виден намек на нечто большее.
Любое пространство это множество элементов (только упорядоченных определенным образом) . Векторное пространство упорядочено алгебраически (это значит, что в нем заданы операции сложения и умножения на число) . Его элементы можно назвать векторами. А можно и не называть.
Пусть в этом пространстве заданы некоторые особые векторы. Такие, что любой вообще вектор может быть записан линейной комбинацией этих особых. "Базис" это другое название для системы этих особых векторов.
К примеру, на плоскости любые два геометрических вектора (если только они не параллельны) образуют базис. Любой третий вектор может быть образован из этих двух, их только нужно умножить на подходящие коэффициенты и сложить по правилу параллелограмма. Эти коэффициенты будут "координатами" вектора в данном базисе.
Ответ от Иван Федоров[гуру]
Да куда уж проще-то, чем "множество векторов"? Что такое множество знаете? - Конкретный набор каких-то объектов. Задать множество можно массой способов: иногда просто перечисляют объекты, как в случае базиса или алфавита, иногда указывают какое-то общее свойство и считают, что в данное множество входят все объекты с указанным свойством (их может быть и бесконечное число, и несчётное).. .
Базис - это такой набор векторов, из которого линейной комбинацией (умножением на число и сложением друг с другом) можно получить любой другой вектор пространства.
Если по порядку, то.. .
Надеюсь, с понятием сложения векторов проблем нет. Умножение на число даёт нам просто изменение длины (модуля) вектора - подобрав соответствующий множитель можем сделать вектор любой длины .
Если два вектора имеют разное направление, можно получить один из другого только лишь умножением на число? - Нельзя, т. к. при умножении меняется только длина. Такие векторы называются линейно независимыми.
Очевидно, что любой вектор можно представить суммой нескольких других векторов. Рассмотрите простой пример - векторы на плоскости. Из одного вектора, домноженного на какое-то число, можно получить любой другой вектор плоскости? Очевидно, что нет. Так мы сможем получить лишь векторы, имеющие то же или противоположное направление. А суммой двух векторов (имеющих разное направление) уже можно представить любой вектор плоскости. Достаточно лишь пририсовать наши вектора к заданному (к началу - начало одного вектора, к концу - конец другого) и "отрегулировать" множителями их длину в нужном направлении так, чтобы замкнулся треугольник. Это означает, что пространство векторов в плоскости - двумерное.
Итак мы получили, что если на плоскости взять два ненулевых вектора с разными направлениями, то их суммой с какими-то множителями можно получить любой вектор.
Вот эти два вектора и есть базис. А множители, которыми подбираем их длину, чтобы получить заданный вектор, - это координаты заданного вектора в этом базисе.
Дальше. Можем мы этими двумя векторами плоскости представить любой вектор трёхмерного пространства? Нет: вектор, не лежащий в плоскости, как ни крути, суммой этих двух векторов не получить. Нужно добавить третий, не лежащий в плоскости. С помощью этих трех векторов уже можно получить любой пространственный вектор.
То, что третий вектор не лежит в плоскости первых двух и потому не может быть записан, как их сумма, называется линейной независимостью.
Аналогично можно рассуждать и дальше, добавляя новые измерения. Таким образом базисом N-мерного пространства могут быть любые N векторов, нужно только чтобы они все были линейно независимыми. Потому что добавление к двумерному базису третьего вектора, лежащего в той же плоскости, не выведет нас из плоскости в пространство и потому не сделает эти три вектора базисом трехмерного пространства.
Базис может обладать дополнительными свойствами.
Если у нас определены единицы длины, то базисные векторы можно взять равными по длине 1. Такой базис называется нормированным.
Если все вектора базиса ортогональны, т. е. перпендикулярны друг другу (другими словами их попарные скалярные произведения равны 0), то такой базис называется ортогональным
Базис, одновременно являющийся и ортогональным, и нормированным, называется ортонормированным, а его базисные вектора - ортами.
Что касается векторного пространства, то его точки не обязательно геометрические "палки со стрелками". N-мерный вектор - это любой объект, который можно представить N числами - его координатами в каком-то базисе, и для которого имеют смысл операции векторного сложения и умножения на число. Т. е. формально можно сначала указать N каких-то независимых объектов и объявить их базисом, а потом уже получить всё векторное пространство, как все возможные линейные комбинации элементов базиса. В таком случае говорят, что векторное пространство натянуто на указанный базис.
Да куда уж проще-то, чем "множество векторов"? Что такое множество знаете? - Конкретный набор каких-то объектов. Задать множество можно массой способов: иногда просто перечисляют объекты, как в случае базиса или алфавита, иногда указывают какое-то общее свойство и считают, что в данное множество входят все объекты с указанным свойством (их может быть и бесконечное число, и несчётное).. .
Базис - это такой набор векторов, из которого линейной комбинацией (умножением на число и сложением друг с другом) можно получить любой другой вектор пространства.
Если по порядку, то.. .
Надеюсь, с понятием сложения векторов проблем нет. Умножение на число даёт нам просто изменение длины (модуля) вектора - подобрав соответствующий множитель можем сделать вектор любой длины .
Если два вектора имеют разное направление, можно получить один из другого только лишь умножением на число? - Нельзя, т. к. при умножении меняется только длина. Такие векторы называются линейно независимыми.
Очевидно, что любой вектор можно представить суммой нескольких других векторов. Рассмотрите простой пример - векторы на плоскости. Из одного вектора, домноженного на какое-то число, можно получить любой другой вектор плоскости? Очевидно, что нет. Так мы сможем получить лишь векторы, имеющие то же или противоположное направление. А суммой двух векторов (имеющих разное направление) уже можно представить любой вектор плоскости. Достаточно лишь пририсовать наши вектора к заданному (к началу - начало одного вектора, к концу - конец другого) и "отрегулировать" множителями их длину в нужном направлении так, чтобы замкнулся треугольник. Это означает, что пространство векторов в плоскости - двумерное.
Итак мы получили, что если на плоскости взять два ненулевых вектора с разными направлениями, то их суммой с какими-то множителями можно получить любой вектор.
Вот эти два вектора и есть базис. А множители, которыми подбираем их длину, чтобы получить заданный вектор, - это координаты заданного вектора в этом базисе.
Дальше. Можем мы этими двумя векторами плоскости представить любой вектор трёхмерного пространства? Нет: вектор, не лежащий в плоскости, как ни крути, суммой этих двух векторов не получить. Нужно добавить третий, не лежащий в плоскости. С помощью этих трех векторов уже можно получить любой пространственный вектор.
То, что третий вектор не лежит в плоскости первых двух и потому не может быть записан, как их сумма, называется линейной независимостью.
Аналогично можно рассуждать и дальше, добавляя новые измерения. Таким образом базисом N-мерного пространства могут быть любые N векторов, нужно только чтобы они все были линейно независимыми. Потому что добавление к двумерному базису третьего вектора, лежащего в той же плоскости, не выведет нас из плоскости в пространство и потому не сделает эти три вектора базисом трехмерного пространства.
Базис может обладать дополнительными свойствами.
Если у нас определены единицы длины, то базисные векторы можно взять равными по длине 1. Такой базис называется нормированным.
Если все вектора базиса ортогональны, т. е. перпендикулярны друг другу (другими словами их попарные скалярные произведения равны 0), то такой базис называется ортогональным
Базис, одновременно являющийся и ортогональным, и нормированным, называется ортонормированным, а его базисные вектора - ортами.
Что касается векторного пространства, то его точки не обязательно геометрические "палки со стрелками". N-мерный вектор - это любой объект, который можно представить N числами - его координатами в каком-то базисе, и для которого имеют смысл операции векторного сложения и умножения на число. Т. е. формально можно сначала указать N каких-то независимых объектов и объявить их базисом, а потом уже получить всё векторное пространство, как все возможные линейные комбинации элементов базиса. В таком случае говорят, что векторное пространство натянуто на указанный базис.
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Объясни че такое Базис простым языком
спросили в Железо Agfa
компьютер ACPI x64-based PC хочу узнать как он в работе, и играх.
Конфигурацию железа в студию.
То, что вы озвучили не даёт ровным счётом никакого представления
подробнее...
компьютер ACPI x64-based PC хочу узнать как он в работе, и играх.
Конфигурацию железа в студию.
То, что вы озвучили не даёт ровным счётом никакого представления
подробнее...
спросили в Red Hat RPM
Linux -> rpm-based дистрибутивы.
RPM-based - это все дистрибутивы, которые устанавливаются из готовых пакетов - rpm. К этому
подробнее...
Linux -> rpm-based дистрибутивы.
RPM-based - это все дистрибутивы, которые устанавливаются из готовых пакетов - rpm. К этому
подробнее...
спросили в TAME
В чем заключается тип работы Full Time, Part Time, Project-based?
Full Time - полный график.
Part Time - неполный график, совместительство и т.
подробнее...
В чем заключается тип работы Full Time, Part Time, Project-based?
Full Time - полный график.
Part Time - неполный график, совместительство и т.
подробнее...
В компьютерную сеть пробрался вирус Shadow.based. Что делать?
Особенности лечения Shadow.based
Читать
подробнее...
Объясните пожалуста! Как отличить x32bit от x64bit?
Делай следующим образом, если ты не знаешь какая у тебя стоит ОС - 32-шка или 64-ка:
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:
что такое границы диапазона RBP
RBP - Risk-Based Pricing - ценообразование по степени риска. Диапазон RBP - это границы низшей и
подробнее...
спросили в Железо Audi Cup
Почему в 64х разрядной системе, компьютер использует только 3.12 Гб оперативнйо памяти из 4 Гб?
Операционная система Microsoft Windows 7 Ultimate
Кто Вам сказал, что Винда x64? И где это
подробнее...
Почему в 64х разрядной системе, компьютер использует только 3.12 Гб оперативнйо памяти из 4 Гб?
Операционная система Microsoft Windows 7 Ultimate
Кто Вам сказал, что Винда x64? И где это
подробнее...
спросили в Железо
Подойдет ли для моего ПК?
"Материнская плата ACPI x64-based PC" - уверен?
Если есть PCI-E 16x слот, то
подробнее...
Подойдет ли для моего ПК?
"Материнская плата ACPI x64-based PC" - уверен?
Если есть PCI-E 16x слот, то
подробнее...
спросили в Интернет
Не могу включить интернет на пк через андроид
в настройках мобилы режим модема поставь.., если есть такое
1.- правой кнопкой мыши по Remote
подробнее...
Не могу включить интернет на пк через андроид
в настройках мобилы режим модема поставь.., если есть такое
1.- правой кнопкой мыши по Remote
подробнее...
спросили в User kv User or
Ошибка. Код события 1000
у ошибки много причин может быть.. .EventID.Net
Даже хотфиксы имеются, вот например один
подробнее...
Ошибка. Код события 1000
у ошибки много причин может быть.. .EventID.Net
Даже хотфиксы имеются, вот например один
подробнее...
спросили в 660 год
где скачать incubation на русском или русификатор подскажите плиз.
Incubation: Космодесант / Incubation: Time Is Running Out (2005/Rus/1C)
Название:
подробнее...
где скачать incubation на русском или русификатор подскажите плиз.
Incubation: Космодесант / Incubation: Time Is Running Out (2005/Rus/1C)
Название:
подробнее...
спросили в Air India Arrow Air
перевод текста с русского на английский
Help to translate precisely please the text on English language:
Chelyabinsk has been based in
подробнее...
перевод текста с русского на английский
Help to translate precisely please the text on English language:
Chelyabinsk has been based in
подробнее...
спросили в Discovery Стратегии
Какие вы знаете стратегии на пк?
Военные
Act of War: Direct Action RTS |
C&C: Iraq War
Cold Zero: The Last
подробнее...
Какие вы знаете стратегии на пк?
Военные
Act of War: Direct Action RTS |
C&C: Iraq War
Cold Zero: The Last
подробнее...
спросили в Азиза
переведите на английский буду очень благодарен давайте знатки английского)
вот держи)))) )
The state Tretyakov gallery, GTG (it is known also as Tretyakov gallery) — an
подробнее...
переведите на английский буду очень благодарен давайте знатки английского)
вот держи)))) )
The state Tretyakov gallery, GTG (it is known also as Tretyakov gallery) — an
подробнее...