четырехугольник



четырехугольники

Автор Кирилл Чанаев задал вопрос в разделе Школы

всё о четырёх угольниках и получил лучший ответ

Ответ от Natalinka[гуру]
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются. Четырехугольники
Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.
Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A1B1C1D1).
Виды четырёхугольников
Параллелограмм
Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограммаСвойства параллелограмма
* противолежащие стороны равны;
* противоположные углы равны;
* диагонали точкой пересечения делятся пополам;
* сумма углов, прилежащих к одной стороне, равна 180°;
* сумма квадратов диагоналей равна сумме квадратов всех сторон:
d12+d22=2(a2+b2).
Признаки параллелограмма
Четырехугольник является параллелограммом, если:
1. Две его противоположные стороны равны и параллельны.
2. Противоположные стороны попарно равны.
3. Противоположные углы попарно равны.
4. Диагонали точкой пересечения делятся пополам.
Трапеция
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны. Трапеция
Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.
Трапеция называется равнобедренной (или равнобокой) , если ее боковые стороны равны.
Трапеция, один из углов которой прямой, называется прямоугольной.
Свойства трапеции
* ее средняя линия параллельна основаниям и равна их полусумме;
* если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
* если трапеция равнобокая, то около нее можно описать окружность;
* если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.
Признаки трапеции
Четырехугольник является трапецией, если его параллельные стороны не равны
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Свойства прямоугольникаСвойства прямоугольника
* все свойства параллелограмма;
* диагонали равны.
Признаки прямоугольника
Параллелограмм является прямоугольником, если:
1. Один из его углов прямой.
2. Его диагонали равны.
Ромб
Ромбом называется параллелограмм, у которого все стороны равны.
Свойства ромбаСвойства ромба
* все свойства параллелограмма;
* диагонали перпендикулярны;
* диагонали являются биссектрисами его углов.
Признаки ромба
1. Параллелограмм является ромбом, если:
2. Две его смежные стороны равны.
3. Его диагонали перпендикулярны.
4. Одна из диагоналей является биссектрисой его угла.
Квадрат
Квадратом называется прямоугольник, у которого все стороны равны.
Свойства квадратаСвойства квадрата
* все углы квадрата прямые;
* диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
Признаки квадрата
Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Ответ от Гюлнар Асланова[новичек]
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются. Четырехугольники
Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.
Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A1B1C1D1).
Виды четырёхугольников
Параллелограмм
Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограмма
* противолежащие стороны равны;
* противоположные углы равны;
* диагонали точкой пересечения делятся пополам;
* сумма углов, прилежащих к одной стороне, равна 180°;
* сумма квадратов диагоналей равна сумме квадратов всех сторон:
d12+d22=2(a2+b2).
Признаки параллелограмма
Четырехугольник является параллелограммом, если:
1. Две его противоположные стороны равны и параллельны.
2. Противоположные стороны попарно равны.
3. Противоположные углы попарно равны.
4. Диагонали точкой пересечения делятся пополам.
Трапеция
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны. Трапеция
Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.
Трапеция называется равнобедренной (или равнобокой) , если ее боковые стороны равны.
Трапеция, один из углов которой прямой, называется прямоугольной.
Свойства трапеции
* ее средняя линия параллельна основаниям и равна их полусумме;
* если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
* если трапеция равнобокая, то около нее можно описать окружность;
* если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.
Признаки трапеции
Четырехугольник является трапецией, если его параллельные стороны не равны
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Свойства прямоугольника
* все свойства параллелограмма;
* диагонали равны.
Признаки прямоугольника
Параллелограмм является прямоугольником, если:
1. Один из его углов прямой.
2. Его диагонали равны.
Ромб
Ромбом называется параллелограмм, у которого все стороны равны.
Свойства ромба
* все свойства параллелограмма;
* диагонали перпендикулярны;
* диагонали являются биссектрисами его углов.
Признаки ромба
1. Параллелограмм является ромбом, если:
2. Две его смежные стороны равны.
3. Его диагонали перпендикулярны.
4. Одна из диагоналей является биссектрисой его угла.
Квадрат
Квадратом называется прямоугольник, у которого все стороны равны.
Свойства квадрата
* все углы квадрата прямые;
* диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
Признаки квадрата
Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Ответ от Любовь Соколова[новичек]
Четырёхугольником называется фигура, которая состоит из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.
Четырёхугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, которая содержит любую из его сторон.
Сумма углов выпуклого четырёхугольника равна 360°:
?A+?B+?C+?D=360°.
Не существует четырёхугольников, у которых все углы острые или все углы тупые.
Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов:
?A < ?B+?C+?D, ?B < ?A+?C+?D,
?C < ?A+?B+?D, ?D < ?A+?B+?D.
Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон:
a < b+c+d, b < a+c+d,
c < a+b+d, d < a+b+c.
Площадь произвольного выпуклого четырёхугольника равна:
Диагоналями четырёхугольника называются отрезки, соединяющие его противолежащие вершины.
Диагонали выпуклого четырёхугольника пересекаются, а невыпуклого – нет.
Площадь произвольного выпуклого четырёхугольника:
Если M, N, P, Q – середины сторон выпуклого четырёхугольника ABCD, а R, S – середины его диагоналей, то четырёхугольники MNPQ, MRPS, NSQR являются параллелограммами и называются параллелограммами Вариньона.
Форма и размеры параллелограммов Вариньона связаны с формой и размерами данного четырёхугольника ABCD. Так MNPQ – прямоугольник, если диагонали четырёхугольника ABCD перпендикулярны; MNPQ – ромб, если диагонали четырёхугольника ABCD равны; MNPQ – квадрат, если диагонали четырёхугольника ABCD перпендикулярны и равны;
SABCD = 2SMNPQ .
Отрезки MP, NQ и RS называются первой, второй и третьей средними линиями выпуклого четырёхугольника.
В параллелограмме, и только в нём, середины диагоналей совпадают, и потому третья средняя линия вырождается в точку. Для других четырёхугольников средние линии – отрезки.
Все средние линии четырёхугольника пересекаются в одной точке и делятся ею пополам:
MG=GP, NG=GQ, RG=GS .
Сумма квадратов средних линий четырёхугольника равна четверти суммы квадратов всех его сторон и диагоналей:
MP2+ NQ2+ RS 2 = ?(AB2+BC2+CD2+AD2+AC2+BD2).
Если ? – угол между первой и второй средними линиями четырёхугольника, то его площадь:
SABCD = MP·NQ·sin?.
Равными плитками, которые имеют форму произвольного, не обязательно выпуклого, четырёхугольника можно замостить плоскость так, чтобы не было наложений плиток друг на друга и не осталось непокрытых участков плоскости.
Описанные четырёхугольники
Четырёхугольник называется описанным около окружности (описанным), если существует такая окружность, которая касается всех его сторон, тогда сама окружность называется вписанной.
Четырёхугольник является описанным тогда и только тогда, кода суммы его противолежащих сторон равны:
a+c = b+d.
Для сторон описанного четырёхугольника и радиуса вписанной в него окружности верно:
a+c ? 4r, b+d ? 4r.
Площадь описанного четырёхугольника:
S = pr,
где r – радиус вписанной окружности, p – полупериметр четырёхугольника.
Площадь описанного четырёхугольника:
Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.
Точки касания вписанной окружности отсекают равные отрезки от углов четырёхугольника:
AK=AN, BK=BL, CL=CM, DM=DN.
Если O – центр окружности, вписанной в четырёхугольник ABCD, то
?AOB+?COD=?BOC+?AOD=180°.
Для описанного четырёхугольника ABCD со сторонами AB=a, BC=b, CD=c и AD=d верны соотношения:
Вписанные четырёхугольники
Четырёхугольник называется вписанным в окружность (вписанным), если существует окружность, проходящая через все его вершины, тогда сама окружность называется описанной около четырёхугольника.
Выпуклый четырёхугольник является описанным тогда и только тогда

Ответ от Ёаня Шкурин[гуру]
Каждый четырехугольник имеет четыре вершины, четыре стороны и две диагонали. Две несмежные стороны четырехугольника называются противоположными. Две вершины, не являющиеся соседними, также называются противоположными.
Четырехугольники бывают выпуклые и невыпуклые.
Каждая диагональ выпуклого четырехугольника разделяет его на два треугольника. Одна из диагоналей невыпуклого четырехугольника также разделяет его на два треугольника.
Так как сумма углов выпуклого n-угольника равна (n-2)*180 градусов, то сумма углов выпуклого четырехугольника равна 360 градусов.

Ответ от Анастасия Дуракова[активный]
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются. Четырехугольники
Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.
Четырехугольники бывают выпуклые и
невыпуклые
Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограмма
* противолежащие стороны равны;
* противоположные углы равны;
* диагонали точкой пересечения делятся пополам;
* сумма углов, прилежащих к одной стороне, равна 180°;
* сумма квадратов диагоналей равна сумме квадратов всех сторон:
Четырехугольник является параллелограммом, если:
1. Две его противоположные стороны равны и параллельны.
2. Противоположные стороны попарно равны.
3. Противоположные углы попарно равны.
4. Диагонали точкой пересечения делятся пополам.
Трапеция
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны. Трапеция
Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.
Трапеция называется равнобедренной (или равнобокой) , если ее боковые стороны равны.
Трапеция, один из углов которой прямой, называется прямоугольной.
Свойства трапеции
* ее средняя линия параллельна основаниям и равна их полусумме;
* если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
* если трапеция равнобокая, то около нее можно описать окружность;
* если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.
Признаки трапеции
Четырехугольник является трапецией, если его параллельные стороны не равны
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Свойства прямоугольника
* все свойства параллелограмма;
* диагонали равны.
Признаки прямоугольника
Параллелограмм является прямоугольником, если:
1. Один из его углов прямой.
2. Его диагонали равны.
Ромб
Ромбом называется параллелограмм, у которого все стороны равны.
Свойства ромба
* все свойства параллелограмма;
* диагонали перпендикулярны;
* диагонали являются биссектрисами его углов.
Признаки ромба
1. Параллелограмм является ромбом, если:
2. Две его смежные стороны равны.
3. Его диагонали перпендикулярны.
4. Одна из диагоналей является биссектрисой его угла.
Квадрат
Квадратом называется прямоугольник, у которого все стороны равны.
Свойства квадрата
* все углы квадрата прямые;
* диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
Признаки квадрата
Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: всё о четырёх угольниках

как вписать окружность в правильный четырехугольник??
Центр вписанной окружности в правильный многоугольник лежит на пересечении биссектрис.

подробнее...

В четырехугольник ABCD вписана окружность AB=8, BC=7, CD=31. Найдите четвертую сторону четырехугольника...
Для того, чтобы выпуклый четырехугольник был описанным, необходимо и достаточно, чтобы суммы длин
подробнее...

как найти центр окружности, описанной около произвольного четырехугольника
если известен диаметр, то радиусы, проведенные через вершины четырехугольника пересекутся в центре
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:

Если известны 3 стороны произвольного четырехугольника.как найти четвертую сторону?
Если в условии упоминается, что этот четырехугольник можно вписать в окружность, то AB*CD=AD*BC (
подробнее...

Как найти сторону четырехугольника описанного вокруг окружности если известны три стороны?
Т. к. четырехугольник описан около окружности, то суммы противоположных сторон равны. поэтому а + с
подробнее...
спросили в Другое
В окружность вписаны правильные треугольник и четырехугольник. Периметр треугольника равен 6 корень из 6 см.
Так как треугольник правильный, то сторона треугольника а=Р/3=2*sqrt(6).
Для правильного
подробнее...

в правильный четырехугольник со стороной а, вписана окружность найти радиус этой окружности(решение тоже пишите )
Правильный четырехугольник - это квадрат.
В квадрат вписана окружность.
Радиус окружности =
подробнее...
спросили в Техника
как найти площадь четырехугольника по периметру и радиусу?
какой радиус может быть у четырехугольника???? двоечник ты!!!! или двоечница. или может быть
подробнее...
спросили в Описание
Перимет четырехугольника, описанного около окружности равен 24, две его стороны равны 5 и 6. Найдите меньшую из сторон?
Пусть четырехугольник будет АВСД.
Если он описанный около окружности, то суммы противоположных
подробнее...
спросили в BSD
площадь четырехугольника 5 класс
Площадь четырехугольника будет равна сумме площадей 2-х прямоугольных треугольников АВD и BCD.
подробнее...

Можно ли вписать в окружность четырехугольник
ты идиот что ли?? ?
конечно можно, четырехугольник должен быть квадратом при
подробнее...
Вписанный четырёхугольник на Википедии
Посмотрите статью на википедии про Вписанный четырёхугольник
Параллелограмм на Википедии
Посмотрите статью на википедии про Параллелограмм
Прямоугольник на Википедии
Посмотрите статью на википедии про Прямоугольник
Средняя линия на Википедии
Посмотрите статью на википедии про Средняя линия
Четырёхугольник на Википедии
Посмотрите статью на википедии про Четырёхугольник
 

Ответить на вопрос:

Имя*

E-mail:*

Текст ответа:*
Проверочный код(введите 22):*