достижения и изобретения индии в средние века



Автор Ђамара Байдукова задал вопрос в разделе Другое

Достижения изобретений средневековой Индии и получил лучший ответ

Ответ от Про100 Жентельмен[гуру]
Человечество обязано Древней Индии почти всем, что касается математики, уровень развития которой во времена Гуптов был гораздо выше, чем у других народов древности. Достижения индийской математики объясняются главным образом тем фактом, что индийцы имели четкую концепцию абстрактного числа, которое они отличали от числового количества или пространственной протяженности предметов.
Индийская цивилизация подарила миру шахматы и десятичную систему счисления. Достижения древней и средневековой Индии в области науки, литературы и искусства, зародившиеся в Индии различные религиозно-философские системы, оказали воздействие на развитие многих цивилизаций Востока, стали неотъемлемой частью современной мировой культуры
Средневековые индийские математики, такие как Брахмагупта (VII в.) , Махавира (IX в.) , Бхаскара (XII в.) , в свою очередь, сделали открытия, которые стали известны в Европе только в эпоху Ренессанса и позднее. Они оперировали положительными и отрицательными величинами, изобрели изящные способы извлечения квадратного и кубического корней, они умели решать квадратные уравнения и некоторые типы неопределенных уравнений. Арь-ябхата вычислил приблизительное значение числа л, которым пользуются и сегодня и которое является выражением дроби 62832/20000, т. е. 3,1416. Это значение, гораздо более точное, чем вычисленное греками, доведено индийскими математиками до девятого десятичного знака. Они сделали ряд открытий в тригонометрии, сферической геометрии и исчислении бесконечно малых, в основном связанных с астрономией. Брахмагупта дошел в изучении неопределенных уравнений дальше того, что Европа узнала к XVIII в. В средневековой Индий прекрасно понимали математическую взаимосвязанность ноля (шунья) и бесконечности. Бхаскара, опровергая своих предшественников, утверждавших, что х : 0 = х, доказал, что результат — бесконечность.
Источник: B средние века у них уже стояли обсерватории для наблюдения за событиями, происходящими в космосе.

Ответ от Likata[гуру]
В раннем Средневековье не было равных индийским медикам, умевшим делать сложные операции даже на черепе. Тогда же в Индии была составлена энциклопедия лекарственных трав.

Ответ от Алена Боженова[новичек]
В раннем Средневековье не было равных индийским медикам, умевшим делать сложные операции даже на черепе. Тогда же в Индии была составлена энциклопедия лекарственных трав.

Ответ от Елена Пузырева[новичек]
Человечество обязано Древней Индии почти всем, что касается математики, уровень развития которой во времена Гуптов был гораздо выше, чем у других народов древности. Достижения индийской математики объясняются главным образом тем фактом, что индийцы имели четкую концепцию абстрактного числа, которое они отличали от числового количества или пространственной протяженности предметов.
Индийская цивилизация подарила миру шахматы и десятичную систему счисления. Достижения древней и средневековой Индии в области науки, литературы и искусства, зародившиеся в Индии различные религиозно-философские системы, оказали воздействие на развитие многих цивилизаций Востока, стали неотъемлемой частью современной мировой культуры
Средневековые индийские математики, такие как Брахмагупта (VII в.) , Махавира (IX в.) , Бхаскара (XII в.) , в свою очередь, сделали открытия, которые стали известны в Европе только в эпоху Ренессанса и позднее. Они оперировали положительными и отрицательными величинами, изобрели изящные способы извлечения квадратного и кубического корней, они умели решать квадратные уравнения и некоторые типы неопределенных уравнений. Арь-ябхата вычислил приблизительное значение числа л, которым пользуются и сегодня и которое является выражением дроби 62832/20000, т. е. 3,1416. Это значение, гораздо более точное, чем вычисленное греками, доведено индийскими математиками до девятого десятичного знака. Они сделали ряд открытий в тригонометрии, сферической геометрии и исчислении бесконечно малых, в основном связанных с астрономией. Брахмагупта дошел в изучении неопределенных уравнений дальше того, что Европа узнала к XVIII в. В средневековой Индий прекрасно понимали математическую взаимосвязанность ноля (шунья) и бесконечности. Бхаскара, опровергая своих предшественников, утверждавших, что х : 0 = х, доказал, что результат — бесконечность.

Ответ от Olga Atamanova[новичек]
Человечество обязано Древней Индии почти всем, что касается математики, уровень развития которой во времена Гуптов был гораздо выше, чем у других народов древности. Достижения индийской математики объясняются главным образом тем фактом, что индийцы имели четкую концепцию абстрактного числа, которое они отличали от числового количества или пространственной протяженности предметов.
Индийская цивилизация подарила миру шахматы и десятичную систему счисления. Достижения древней и средневековой Индии в области науки, литературы и искусства, зародившиеся в Индии различные религиозно-философские системы, оказали воздействие на развитие многих цивилизаций Востока, стали неотъемлемой частью современной мировой культуры
Средневековые индийские математики, такие как Брахмагупта (VII в.) , Махавира (IX в.) , Бхаскара (XII в.) , в свою очередь, сделали открытия, которые стали известны в Европе только в эпоху Ренессанса и позднее. Они оперировали положительными и отрицательными величинами, изобрели изящные способы извлечения квадратного и кубического корней, они умели решать квадратные уравнения и некоторые типы неопределенных уравнений. Арь-ябхата вычислил приблизительное значение числа л, которым пользуются и сегодня и которое является выражением дроби 62832/20000, т. е. 3,1416. Это значение, гораздо более точное, чем вычисленное греками, доведено индийскими математиками до девятого десятичного знака. Они сделали ряд открытий в тригонометрии, сферической геометрии и исчислении бесконечно малых, в основном связанных с астрономией. Брахмагупта дошел в изучении неопределенных уравнений дальше того, что Европа узнала к XVIII в. В средневековой Индий прекрасно понимали математическую взаимосвязанность ноля (шунья) и бесконечности. Бхаскара, опровергая своих предшественников, утверждавших, что х : 0 = х, доказал, что результат — бесконечность.

Ответ от Игорь моминов[новичек]
достижения и изобретения индии в средние века

Ответ от ЁветланаМатафонова[новичек]
Человечество обязано Древней Индии почти всем, что касается математики, уровень развития которой во времена Гуптов был гораздо выше, чем у других народов древности. Достижения индийской математики объясняются главным образом тем фактом, что индийцы имели четкую концепцию абстрактного числа, которое они отличали от числового количества или пространственной протяженности предметов.
Индийская цивилизация подарила миру шахматы и десятичную систему счисления. Достижения древней и средневековой Индии в области науки, литературы и искусства, зародившиеся в Индии различные религиозно-философские системы, оказали воздействие на развитие многих цивилизаций Востока, стали неотъемлемой частью современной мировой культуры
Средневековые индийские математики, такие как Брахмагупта (VII в.) , Махавира (IX в.) , Бхаскара (XII в.) , в свою очередь, сделали открытия, которые стали известны в Европе только в эпоху Ренессанса и позднее. Они оперировали положительными и отрицательными величинами, изобрели изящные способы извлечения квадратного и кубического корней, они умели решать квадратные уравнения и некоторые типы неопределенных уравнений. Арь-ябхата вычислил приблизительное значение числа л, которым пользуются и сегодня и которое является выражением дроби 62832/20000, т. е. 3,1416. Это значение, гораздо более точное, чем вычисленное греками, доведено индийскими математиками до девятого десятичного знака. Они сделали ряд открытий в тригонометрии, сферической геометрии и исчислении бесконечно малых, в основном связанных с астрономией. Брахмагупта дошел в изучении неопределенных уравнений дальше того, что Европа узнала к XVIII в. В средневековой Индий прекрасно понимали математическую взаимосвязанность ноля (шунья) и бесконечности. Бхаскара, опровергая своих предшественников, утверждавших, что х : 0 = х, доказал, что результат — бесконечность.

Ответ от Иван Нестеров[новичек]
Человечество обязано Древней Индии почти всем, что касается математики, уровень развития которой во времена Гуптов был гораздо выше, чем у других народов древности. Достижения индийской математики объясняются главным образом тем фактом, что индийцы имели четкую концепцию абстрактного числа, которое они отличали от числового количества или пространственной протяженности предметов.
Индийская цивилизация подарила миру шахматы и десятичную систему счисления. Достижения древней и средневековой Индии в области науки, литературы и искусства, зародившиеся в Индии различные религиозно-философские системы, оказали воздействие на развитие многих цивилизаций Востока, стали неотъемлемой частью современной мировой культуры
Средневековые индийские математики, такие как Брахмагупта (VII в.) , Махавира (IX в.) , Бхаскара (XII в.) , в свою очередь, сделали открытия, которые стали известны в Европе только в эпоху Ренессанса и позднее. Они оперировали положительными и отрицательными величинами, изобрели изящные способы извлечения квадратного и кубического корней, они умели решать квадратные уравнения и некоторые типы неопределенных уравнений. Арь-ябхата вычислил приблизительное значение числа л, которым пользуются и сегодня и которое является выражением дроби 62832/20000, т. е. 3,1416. Это значение, гораздо более точное, чем вычисленное греками, доведено индийскими математиками до девятого десятичного знака. Они сделали ряд открытий в тригонометрии, сферической геометрии и исчислении бесконечно малых, в основном связанных с астрономией. Брахмагупта дошел в изучении неопределенных уравнений дальше того, что Европа узнала к XVIII в. В средневековой Индий прекрасно понимали математическую взаимосвязанность ноля (шунья) и бесконечности. Бхаскара, опровергая своих предшественников, утверждавших, что х : 0 = х, доказал, что результат — бесконечность.

Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Достижения изобретений средневековой Индии
спросили в Спорт
История спортивной гимнастики?
Гимнастика (от греческого "гимназо" -обучаю, тренирую) - система телесных (физических) упражнений,
подробнее...

Помогите найти про Египет
Еги́пет (греч. Αίγυπτος) — страна в северо-восточной
подробнее...
спросили в XII век
Какими достижениями прославились цивилизации эпохи Средних веков ?
Цивилизаций было много. Если брать Европу: На протяжении XII—XIII веков в Европе произошёл резкий
подробнее...
спросили в Другое 1498 год
какие знаете факты о словах арабского происхождения?
По поводу алгебры- арабам принадлежат особые заслуги в развитии тригонометрии, других областей
подробнее...

Назовите особенности древних цивилизаций. Кратко.
особенности древних цивилизаций

Чему нас учит история религий? Что они повсюду раздували
подробнее...
История математики в Индии на Википедии
Посмотрите статью на википедии про История математики в Индии
 

Ответить на вопрос:

Имя*

E-mail:*

Текст ответа:*
Проверочный код(введите 22):*