Автор АНДРЕЙ 000000 задал вопрос в разделе Домашние задания
нужен доклад по темам, Угол между прямыми, Угол между скрещивающимся, Угол между прямой и плоскостью, Угол между плоскостям и получил лучший ответ
Ответ от Иван Новиков[гуру]
11.6. Вычисление угла между прямыми
Пусть прямые и заданы общими уравнениями
и Обозначим через `6; величину угла между прямыми и (напомним, что угол между прямыми измеряется от 0° до 90°), а через `8; – угол между нормальными векторами и этих прямых. Если `8; X04; 90°, то `6; = `8;. Если же `8; > 90°, то `6; = 180° – `8;. В обоих случаях верно равенство Из теоремы 11.10 следует, что
и, следовательно,
Записав через координаты, получим
Если прямые и заданы уравнениями с угловыми коэффициентами и
и то нормальные векторы этих прямых могут быть и выражение для косинуса угла между этими прямыми будет иметь вид:
Из последнего выражения следует, что если то cos `6; = 1 и `6; = 0, то есть прямые параллельны или совпадают. С другой стороны, если прямые параллельны, то `6; = 0 или cos `6; = 1. Подставляя в правую часть вместо cos `6; его значение 1, умножая обе части на знаменатель и возводя в квадрат, получим
Отсюда получаем
Если то cos `6; = 0 и то есть прямые перпендикулярны. Обратно, если прямые перпендикулярны, то или cos `6; = 0. Отсюда следует с необходимостью
Следовательно, необходимые и достаточные условия параллельности и перпендикулярности двух прямых, заданных уравнениями с угловыми коэффициентами и формулируются следующим образом.
Теорема 11.13.
Для того чтобы прямые и были
параллельны, необходимо и достаточно, чтобы
перпендикулярны, необходимо и достаточно, чтобы
Пользуясь знанием координат направляющего и нормального векторов прямых, заданных общими уравнениями, можно сформулировать условия параллельности и перпендикулярности прямых через коэффициенты общих уравнений этих прямых.
Теорема 11.14.
Для того чтобы прямые и были
параллельны, необходимо и достаточно, чтобы соответствующие коэффициенты их уравнений при одноименных неизвестных были пропорциональны, то есть
перпендикулярны, необходимо и достаточно, чтобы выполнялось равенство
Доказательство
Пусть – направляющие векторы прямых. Тогда необходимым и достаточным условием параллельности прямых является условие коллинеарности векторов и то есть
Так как при этом и то k X00; 0. Поэтому, если один из коэффициентов равен нулю, например то с необходимостью При этом С учетом этого можно записать
откуда формально следует
Отметим при этом, что если одновременно то оба уравнения задают одну и ту же прямую и в этом случае прямые совпадают. Если же то прямые параллельны.
Неоходимым и достаточным условием перпендикулярности прямых является условие ортогональности их направляющих векторов и для чего, в свою очередь, необходимо и достаточно равенство нулю их скалярного произведения, то есть
что и требовалось доказать.
Пусть задана прямая l общим уравнением Ax + By + C = 0 и некоторая точка лежащая вне прямой. Поставим задачу найти расстояние от этой точки до прямой l. Опустим перпендикуляр из точки на прямую l и обозначим радиус-векторы точек и соответственно (см. рис. 11.6.1). Очевидно,
Рисунок 11.6.1. Пусть – некоторая точка прямой l, отличная от точки Тогда уравнение прямой l можно записать в нормальной векторной форме:
где а – вектор нормали к прямой l. Или, в векторной форме,
Очевидно, справедливо векторное равенство причем поэтому Умножив обе части равенства скалярно на вектор, получим
Так как точка лежит на прямой l, то и, следовательно, Подставляя в исходное равенство, найдем
Отсюда
Переходя к координатной форме записи и учитывая, что имеем
Таким образом верна теорема Теорема 11.15.
Растояние от точки до прямой l, заданной уравнением Ax + By + C = 0 вычисляется по формуле
что такое широта и долгота по научному?
Широта — географическая координата в ряде систем сферических координат, определяющая положение
подробнее...
что такое координата?
расположение точки (при координатной плоскости) относительно оси икс и
подробнее...
1. Какими величинами определяется положение тела (точки) в пространстве? Сколько таких величин ?
Система координат — комплекс определений, реализующий метод координат, то есть способ определять
подробнее...