Автор Арина Алексеева задал вопрос в разделе ВУЗы, Колледжи
Помогите! Вычислить площадь криволинейной трапеции, ограниченной линиями: y=2x+3, и x=1, x=3, y=0 и получил лучший ответ
Ответ от Андрей Янчук[гуру]
Площадь равна =
3
=S(2x+3)dx=x^2+3x=18-4=14
1
Ответ от Артем Шмелев[гуру]
площадь = интеграл от 1 до 3 (2x+3) по dx
площадь = интеграл от 1 до 3 (2x+3) по dx
Ответ от Лесник[гуру]
Посмотри определеные интегралы. Проще уже и быть не может
Посмотри определеные интегралы. Проще уже и быть не может
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Помогите! Вычислить площадь криволинейной трапеции, ограниченной линиями: y=2x+3, и x=1, x=3, y=0
спросили в Другое Polsat
вычислить площадь фигуры ограниченной линиями y=1/x,y=1,x=4
Как найти площадь фигуры ограниченной линиями
1По определению интеграла, он равен
подробнее...
вычислить площадь фигуры ограниченной линиями y=1/x,y=1,x=4
Как найти площадь фигуры ограниченной линиями
1По определению интеграла, он равен
подробнее...
Вычислить объем тела, полученного вращением вокруг оси Ох криволинейной трапеции, ограниченной линиями у=1-х^2, у=0
1. Решим уравнение 1-x^2==0, получим, что y=0 при x=1, x=-1
2. Решим интеграл, получим площадь
подробнее...