Автор Гусь Золотой задал вопрос в разделе Советы, Идеи
А почему на ноль делить нельзя, а вычитать из него можно? и получил лучший ответ
Ответ от Олеся и Павел Яковлевы[гуру]
Делить действительное число, отличное от нуля, на ноль нельзя (точнее невозможно) , так как нет такого действительного числа, которое при умножении на ноль давало бы ненулевой результат.
Вычитать из нуля можно, так как при вычитании из нуля получаем число, противоположное по знаку вычитаемому.
Ответ от BOPOHEHOK[активный]
друг мужайся нас всех обманывали
на ноль делить можно
друг мужайся нас всех обманывали
на ноль делить можно
Ответ от Наталия Андрианова[мастер]
а ТЫ ПОПРОБУЙ АПЕЛЬСИН НА НОЛЬ ПОДЕЛИ!
а ТЫ ПОПРОБУЙ АПЕЛЬСИН НА НОЛЬ ПОДЕЛИ!
Ответ от Просто очень хороший человек[гуру]
В высшей математике можно. Сколько раз содержится ноль в яблоке? Ясно сколько - бесконечное количество раз.
В высшей математике можно. Сколько раз содержится ноль в яблоке? Ясно сколько - бесконечное количество раз.
Ответ от Арсений Бардачёв[гуру]
Потому что если делить на 0, то самого процесса деления не будет.
Потому что если делить на 0, то самого процесса деления не будет.
Ответ от Mike Poser[гуру]
делить на 0 нельзя
делить на 0 нельзя
Ответ от Иван GanoZri Гусак[гуру]
отнимать можно так как есть ОТРИЦАТЕЛЬНЫЕ числа, а делить нельзя так как нет такогочисла, которое можно было сопоставить с делимым на ноль. НУНЕТ ЕГО.
отнимать можно так как есть ОТРИЦАТЕЛЬНЫЕ числа, а делить нельзя так как нет такогочисла, которое можно было сопоставить с делимым на ноль. НУНЕТ ЕГО.
Ответ от Sunny-ok[гуру]
Делить на ноль нельзя! » — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему? » А ведь на самом деле очень интересно и важно знать, почему же нельзя.
Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.
Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 — это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача — найти подходящее число.
Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.
Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.
Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение. ) А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.
Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0 : 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0 : 0 = 1? Но ведь так можно взять любое число и получить 0 : 0 = 5, 0 : 0 = 317 и т. д.
Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0 : 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности» , но в арифметике таких случаев не встречается. )
Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.
Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.
Делить на ноль нельзя! » — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему? » А ведь на самом деле очень интересно и важно знать, почему же нельзя.
Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.
Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 — это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача — найти подходящее число.
Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.
Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.
Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение. ) А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.
Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0 : 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0 : 0 = 1? Но ведь так можно взять любое число и получить 0 : 0 = 5, 0 : 0 = 317 и т. д.
Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0 : 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности» , но в арифметике таких случаев не встречается. )
Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.
Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.
Ответ от Кеша ШHИПЕЛЬС0Н[гуру]
не слушай их всех и дели на ноль смело (они все дураки я их знаю)
не слушай их всех и дели на ноль смело (они все дураки я их знаю)
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: А почему на ноль делить нельзя, а вычитать из него можно?
Какое из утверждений верно: а) бухгалтерская прибыль – неявные издержки = экономическая прибы
Экономическая или чистая прибыль – это то, что остается после вычитания из выручки издержек
подробнее...
ЕГЭ (математика В13) как научиться извлекать корень из многозначного числа БЕЗ КАЛЬКУЛЯТОРА???
с помощью таблицы квадратов.
возможно тебе пригодится это:
Как быстро считать в
подробнее...
спросили в Степени 10
Как извлечь квадратный корень из многозначного числа?
484 *100 это 22 *10
как только сотню увидела, так в таблице квадратов и смотреть можно.
подробнее...
Как извлечь квадратный корень из многозначного числа?
484 *100 это 22 *10
как только сотню увидела, так в таблице квадратов и смотреть можно.
подробнее...
Можно ли научиться быстро считать в уме? Если да, то как?
Ученые доказали, что люди, регулярно считающие в уме застрахованы от старческого маразма и раннего
подробнее...
спросили в Сумматоры
Помогите с умножением двоичных чисел...
Вообще, умножение сложная операция, и специально для нее в компьютере имеется регистр, который
подробнее...
Помогите с умножением двоичных чисел...
Вообще, умножение сложная операция, и специально для нее в компьютере имеется регистр, который
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:
спросили в Нола
Почему нельзя делить на ноль?
Все просто! Возьмем два варианта:
1.ый Представим что мы делим не на 0, а на число близкое к
подробнее...
Почему нельзя делить на ноль?
Все просто! Возьмем два варианта:
1.ый Представим что мы делим не на 0, а на число близкое к
подробнее...
что такое иррациональные числа?
Это _не_ рациональные - то есть такие, которые нельзя представить в виде обыкновенной дроби. Само
подробнее...
СКАЖИТЕ КАК СТОЛБИКОМ ДЕЛИТЬ ПРАВИЛЬНО КТО СКАЖЕТ ТОТ МОЛОДЕЦ
Например возьмём пример 512 : 8, Для деления чисел из двух и более цифр (знаков) применяют деление
подробнее...
спросили в Рекурсия
алгоритм нахождения корня числа без функции sqrt()
возведение в степень 1/2 как
подробнее...
алгоритм нахождения корня числа без функции sqrt()
возведение в степень 1/2 как
подробнее...
Из чего состоит выручка и из чего состоит прибыль?
Доход (поступления от покупателей на расчетный счет) после вычитания из него НДС и акцизов образует
подробнее...
Объясните тему!!! Вычитание отрицательных чисел!!!
Есть правило - минус на минус даёт плюс. То есть -(-13) = + 13
А чтобы проще запомнить,
подробнее...
О чём книга "Может, нуль не виноват? "?
«Может, нуль не виноват? » – сказочная повесть российской детской писательницы Ирины Токмаковой,
подробнее...
какие есть 3 свойства вычитания?
1. Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а
подробнее...
выполнить сложение и вычитание переодических дробей: 0,(4)+0,(33) математика
Сначала надо преобразовать бесконечную периодическую десятичную дробь в обыкновенную. Для этого
подробнее...