Автор King задал вопрос в разделе Естественные науки
Господа математики! и получил лучший ответ
Ответ от Krab Bark[гуру]
Если два равно трем, то можно доказать что угодно (Бертран Рассел) . Если теорему нельзя ни доказать, ни опровергнуть, то она еще не истинна, как это утверждается в исходном предположении. В данном случае на самом деле есть три состояния теоремы - доказана, опровергнута, неизвестно.
Но в предположении сказано, что есть три состояния теоремы - опровергнута, доказана, истинна.
По сути, это исходное предположение переопределяет слово "истинно" к значению "неизвестно". Тогда - да, если теорему нельзя ни доказать, ни опровергнуть, то она истинна, но слово "истинна" тут означает "неизвестно". Это легко проверяется - по предположению доказанная теорема не истинна.
King
(17242)
Да, я впервые услышал этот парадокс здесь, на "Ответах", года 1,5 назад.
Ещё очень любопытно можно доказать, что бог не может быть одновременно всемогущим и вездесущим. Не помню, в какой форме приводилось это доказательство тем, от кого я его впервые услышал, но вот так вполне сойдёт: "Сможет ли бог весь поместится в шкафу? Если да, то он не вездесущ. Если нет, то он не всемогущ."
"Значит теорему Ферма можно доказать, либо опровергнуть" -можно доказать только её не доказуемость а не саму суть теоремы.... Если теорему Ферма нельзя ни доказать, ни опровергнуть, то она истинна (т. к. если бы она была ложна, то предъявление тройки чисел (a, b, c), удовлетворяющих уравнению a^n+b^n=c^n служило бы опровержением теоремы, а по предположению теорему опровергнуть нельзя) . Но такие рассуждения можно рассматривать как доказательство теоремы. ПРОТИВОРЕЧИЕ. как я и говорил ето только доказательство её недоказуемости... .
Я знаю, что теорема Ферма доказана, мне просто интересно, корректно ли рассуждение выше? НЕТ
Мне (IMHO) кажется, что Ваше рассуждение абсолютно верно, но ТРИВИАЛЬНО, поскольку ДОКАЗАТЕЛЬСТВО того, что теорему, сформулированную как отрицание (нет чего-то) нельзя ни доказать, ни опровергнуть собственно автоматически является доказательством САМОЙ ТЕОРЕМЫ....
"(т. к. если бы она была ложна, то предъявление тройки чисел (a, b, c), удовлетворяющих уравнению a^n+b^n=c^n служило бы опровержением теоремы, а по предположению теорему опровергнуть нельзя) " - Ошибка: истинность/ложность чего-то и конкретный пример/контрпример - разные вещи, первое может быть и без второго: например, известно что объекты данного типа существуют, но предъявить в явном виде ни одного нельзя.
"Если теорему нельзя ни доказать, ни опровергнуть, то она истинна" - так, по сути, звучит рассуждение выше, если отбросить "Ферма" ...Рассуждение - некорректно. Кто шьёт сапоги сапожнику ...
Вот Вам теорема : "Существуют недоказанные теоремы, недоказуемость которых доказать невозможно "
Опровергните или докажите ...
Во-первых, все 300 лет со времен Ферма доказательства шли одновременно по 2 направлениям - пытались алгебраически вывести равенство, то есть НЕ равенство, и пытались найти опровергающий пример. Ни то, ни другое, не удавалось.
Твое рассуждение в духе теоремы Геделя о неполноте, но оно только доказывает то, что теорему доказать нельзя.
Однако лет 100 назад все-таки доказали, что теорему Ферма можно доказать. И только в 1997, кажется, году (пишу по своей памяти, точный год лень искать в Инете) доказали уже саму теорему.
Напоминаю: в теореме Ферма говорится о том, что для любых натуральных чисел n, больших 2, уравнение a в степени n плюс b в степени n равно c в степени n не имеет натуральных решений a, b и с.
Для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик ал-Ходжанди, но его доказательство не сохранилось. В общем виде теорема была сформулирована Пьером Ферма в 1637 на полях «Арифметики» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить: "...наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него". Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4, что добавляет сомнений в том, что у него было доказательство общего случая, иначе он непременно упомянул бы о нём в этой статье. Эйлер в 1770 доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 — для n = 5, Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением 37, 59, 67. Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел. Считается, что теорема стоит на первом месте по количеству неверных доказательств. В 1908 году немецкий любитель математики Вольфскель завещал 100000 марок тому, кто докажет теорему Ферма. После Первой мировой войны премия обесценилась. В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение при n > 3 может иметь лишь конечное число взаимно простых решений. Последний, но самый важный, шаг в доказательстве теоремы был сделан в сентябре 1994 года Уайлсом. Его 130-страничное доказательство было опубликовано
в журнале «Annals of Mathematics». Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Шимуры (это предположение было доказано Кеном Рибетом при участии Ж. ‑П. Серра. Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы) , но в нём вскоре обнаружился серьёзный пробел; с помощью Ричарда Тэйлора пробел удалось достаточно быстро ликвидировать. В 1995 году был опубликован завершающий вариант. Простота формулировки теоремы Ферма (доступная в понимании даже школьнику) и сложность (130 страниц) единственного известного доказательства вдохновляют многих на попытки найти другое, более простое доказательство. По состоянию на текущий момент (апрель 2009 года) успешных попыток такого рода неизвестно. Отдельные авторы даже добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, а то, что было в передаче у Малахова - обыкновенное ШОУ. Я была достаточно убедительна?
откуда произошло слово яблоко?
Помимо обозначения плода «яблоко» имеет массу значений.
До странности много вещей
подробнее...
Хочу поставить пластиковое окно. Подскажите, чтобы было недорого и в комнате тепло, какое лучше?
Не хочу вас пугать, решать вам. Я поставила пластиковые окна, начались небольшие проблемы и я
подробнее...
Каково Число Зверя? 666 или 616? И кто этот Зверь? Как его имя?
Книга Откровения часто вызывала и вызывает споры, породила множество комментариев, порой даже
подробнее...
Чем полезен сыр ?
Сыр — высокопитательный пищевой продукт, изготовляемый из свернувшегося (кислого) молока. Обычно
подробнее...
Срочно нужны анекдоты про математику... у кого есть скиньте))
# Только неграмотный человек на вопрос "Как найти площадь Ленина? " отвечает "длину Ленина умножить
подробнее...
Отряд 731 чем себя проявил во время 2 Мировой войны?
По показаниям на суде в Хабаровске командующего Квантунской армией генерала Оцудзо Ямады, «Отряд
подробнее...
Поделитесь опытом-КАК ЗАВАРИВАЮТ КИТАЙСКИЙ ЧАЙ СОРТ "ПУЭР"?
Так как пуэр имеет очень сильный запах и насыщенный цвет, не рекомендуется заваривать его в
подробнее...
Чем полезен кофе
Чем полезен и вреден кофе
Напиток может защитить от мигрени и камней, но вызвать
подробнее...
Хронический панкреатит можно вылечить?
Строгое соблюдение диеты, отказ от употребления алкоголя, адекватность поддерживающей терапии
подробнее...
напиток из чайного гриба, полезен ли он? и чем?
НАПИТОК ИЗ ЧАЙНОГО ГРИБА
Напиток, приготовленный на основе чайного гриба, довольно
подробнее...
В чем заключается Загадка Эйнштейна?
Задачка забавная, только самое в ней главное, что решаться она должна чисто головой, без бумаги и
подробнее...