Ответ от MISS INDEPENDENT id77134610[гуру]
Объём — количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п. Синонимом вместимости частично является ёмкость, но словом ёмкость обозначают также сосуды.
Ответ от Ђата[гуру]
Объём, одна из основных величин, связанных с геометрическими телами. В простейших случаях измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины.
Задача вычисления О. простейших тел, идущая от практических потребностей, была одним из стимулов развития геометрии. Математика Древнего Востока (Вавилония, Египет) располагала рядом правил (большей частью эмпирических) для вычисления О. тел, с которыми чаще всего приходилось встречаться на практике (например, призматических брусьев, пирамид полных и усечённых, цилиндров). Среди формул О. были и неточные, дававшие не слишком заметную процентную ошибку лишь в пределах употребительных линейных размеров тела. Греческая математика последних столетий до нашей эры освободила теорию вычисления О. от приближённых эмпирических правил. В "Началах" Евклида и в сочинениях Архимеда имеются только точные правила для вычисления О. многогранников и некоторых круглых тел (цилиндра, конуса, шара и их частей). При этом уже в учении об О. многогранников греческой математики должны были преодолеть значительные трудности, существенно отличающие этот отдел геометрии от родственного ему отдела о площадях многоугольников. Источник различия, как выяснилось лишь в начале 20 в., состоит в следующем: в то время как всякий многоугольник можно посредством надлежащих прямолинейных разрезов и перекладывания полученных частей "перекроить" в квадрат, аналогичное преобразование (посредством плоских разрезов) произвольного многогранника в куб оказывается, вообще говоря, невозможным (теорема Дена, 1901). Отсюда становится ясным, почему Евклид уже в случае треугольной пирамиды был вынужден прибегнуть к бесконечному процессу последовательных приближений, пользуясь при доказательстве исчерпывания методом. Бесконечный процесс лежит и в основе современной трактовки измерения О., сводящийся к следующему. Рассматриваются всевозможные многогранники, вписанные в тело К, и всевозможные многогранники, описанные вокруг тела К. Вычисление О. многогранника сводится к вычислению объёмов составляющих его тетраэдров (треугольных пирамид). Пусть {Vi} — числовое множество объёмов, вписанных в тело многогранников, a {Vd} — числовое множество описанных вокруг тела К многогранников. Множество {Vi} ограничено сверху (объёмом любого описанного многогранника), а множество {Vd} ограничено снизу (например, числом нуль). Наименьшее из чисел, ограничивающее сверху множество {Vi}, называется нижним объёмом Vтела К; а наибольшее из чисел, ограничивающее снизу множество {Vd}, называется верхним объёмом тела К. Если верхний объём тела К совпадает с его нижним объёмом V, то число V = = V называется объёмом тела К, а само тело — кубируемым телом. Для того чтобы тело было кубируемым, необходимо и достаточно, чтобы для любого положительного числа e можно было указать такой описанный вокруг тела многогранник и такой вписанный в тело многогранник, разность Vd — Vi объёмов которых была бы меньше e.
Аналитически О. может быть выражен с помощью кратных интегралов. Пусть тело К (рис. 1) ограничено цилиндрической поверхностью с параллельными оси Oz образующими, квадрируемой областью М плоскости Оху и поверхностью z = f (x, у), которую любая параллель к образующей цилиндра пересекает в одной и только в одной точке. Объём такого тела может быть вычислен с помощью двойного интеграла
.
О. тела, ограниченного замкнутой поверхностью, которая встречается с параллелью к оси Oz не более чем в двух точках, может быть вычислен как разность О. двух тел, подобных предшествующему. О. тела может быть выражен в виде тройного интеграла
,
где интегрирование распространяется на часть пространства, занятую телом. Иногда удобно вычислять О. тел через его поперечные сечения. Пусть тело (рис.2), содержащееся между плоскостями z = а и z = b (b > а), рассекается плоскостями, перпендикулярными оси Oz. Если все сечения тела квадрируемы и площадь сечения S — непрерывная функция от z, то О. тела может быть выражен простым ин
Объём, одна из основных величин, связанных с геометрическими телами. В простейших случаях измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины.
Задача вычисления О. простейших тел, идущая от практических потребностей, была одним из стимулов развития геометрии. Математика Древнего Востока (Вавилония, Египет) располагала рядом правил (большей частью эмпирических) для вычисления О. тел, с которыми чаще всего приходилось встречаться на практике (например, призматических брусьев, пирамид полных и усечённых, цилиндров). Среди формул О. были и неточные, дававшие не слишком заметную процентную ошибку лишь в пределах употребительных линейных размеров тела. Греческая математика последних столетий до нашей эры освободила теорию вычисления О. от приближённых эмпирических правил. В "Началах" Евклида и в сочинениях Архимеда имеются только точные правила для вычисления О. многогранников и некоторых круглых тел (цилиндра, конуса, шара и их частей). При этом уже в учении об О. многогранников греческой математики должны были преодолеть значительные трудности, существенно отличающие этот отдел геометрии от родственного ему отдела о площадях многоугольников. Источник различия, как выяснилось лишь в начале 20 в., состоит в следующем: в то время как всякий многоугольник можно посредством надлежащих прямолинейных разрезов и перекладывания полученных частей "перекроить" в квадрат, аналогичное преобразование (посредством плоских разрезов) произвольного многогранника в куб оказывается, вообще говоря, невозможным (теорема Дена, 1901). Отсюда становится ясным, почему Евклид уже в случае треугольной пирамиды был вынужден прибегнуть к бесконечному процессу последовательных приближений, пользуясь при доказательстве исчерпывания методом. Бесконечный процесс лежит и в основе современной трактовки измерения О., сводящийся к следующему. Рассматриваются всевозможные многогранники, вписанные в тело К, и всевозможные многогранники, описанные вокруг тела К. Вычисление О. многогранника сводится к вычислению объёмов составляющих его тетраэдров (треугольных пирамид). Пусть {Vi} — числовое множество объёмов, вписанных в тело многогранников, a {Vd} — числовое множество описанных вокруг тела К многогранников. Множество {Vi} ограничено сверху (объёмом любого описанного многогранника), а множество {Vd} ограничено снизу (например, числом нуль). Наименьшее из чисел, ограничивающее сверху множество {Vi}, называется нижним объёмом Vтела К; а наибольшее из чисел, ограничивающее снизу множество {Vd}, называется верхним объёмом тела К. Если верхний объём тела К совпадает с его нижним объёмом V, то число V = = V называется объёмом тела К, а само тело — кубируемым телом. Для того чтобы тело было кубируемым, необходимо и достаточно, чтобы для любого положительного числа e можно было указать такой описанный вокруг тела многогранник и такой вписанный в тело многогранник, разность Vd — Vi объёмов которых была бы меньше e.
Аналитически О. может быть выражен с помощью кратных интегралов. Пусть тело К (рис. 1) ограничено цилиндрической поверхностью с параллельными оси Oz образующими, квадрируемой областью М плоскости Оху и поверхностью z = f (x, у), которую любая параллель к образующей цилиндра пересекает в одной и только в одной точке. Объём такого тела может быть вычислен с помощью двойного интеграла
.
О. тела, ограниченного замкнутой поверхностью, которая встречается с параллелью к оси Oz не более чем в двух точках, может быть вычислен как разность О. двух тел, подобных предшествующему. О. тела может быть выражен в виде тройного интеграла
,
где интегрирование распространяется на часть пространства, занятую телом. Иногда удобно вычислять О. тел через его поперечные сечения. Пусть тело (рис.2), содержащееся между плоскостями z = а и z = b (b > а), рассекается плоскостями, перпендикулярными оси Oz. Если все сечения тела квадрируемы и площадь сечения S — непрерывная функция от z, то О. тела может быть выражен простым ин
Ответ от Romaz[гуру]
1. Величина чего-нибудь, в длину, высоту и ширину, измеряемая в кубических единицах. пример: Объём пирамиды. Объём здания.
2. Вообще величина, количество. Большой объём работ. объём информации, объём знаний.
1. Величина чего-нибудь, в длину, высоту и ширину, измеряемая в кубических единицах. пример: Объём пирамиды. Объём здания.
2. Вообще величина, количество. Большой объём работ. объём информации, объём знаний.
Ответ от Надежда буторова панькова[активный]
Объём показывает, сколько места предмет занимает в пространстве.
Объём показывает, сколько места предмет занимает в пространстве.
Ответ от ЃЛЬЯНА КУРНОСОВА[новичек]
Объём — количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п. Синонимом вместимости частично является ёмкость, но словом ёмкость обозначают также сосуды.
Объём — количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п. Синонимом вместимости частично является ёмкость, но словом ёмкость обозначают также сосуды.
Ответ от Бахтовар Бобохужаев[новичек]
спс всем
спс всем
Ответ от Веруня магомедова[новичек]
объем измеряется с помощью куба
объем измеряется с помощью куба
Ответ от Елена Стрекалова[активный]
канешна спс но я нифига не панимаю
канешна спс но я нифига не панимаю
Ответ от Ваня Зоренко[активный]
длина ширина и высота
длина ширина и высота
Ответ от Кирилл Бушланов[активный]
Объём — количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п. Синонимом вместимости частично является ёмкость, но словом ёмкость обозначают также сосуды.
Объём — количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п. Синонимом вместимости частично является ёмкость, но словом ёмкость обозначают также сосуды.
Ответ от Никита Зиновьев[новичек]
Объём, одна из основных величин, связанных с геометрическими телами. В простейших случаях измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины.
Задача вычисления О. простейших тел, идущая от практических потребностей, была одним из стимулов развития геометрии. Математика Древнего Востока (Вавилония, Египет) располагала рядом правил (большей частью эмпирических) для вычисления О. тел, с которыми чаще всего приходилось встречаться на практике (например, призматических брусьев, пирамид полных и усечённых, цилиндров). Среди формул О. были и неточные, дававшие не слишком заметную процентную ошибку лишь в пределах употребительных линейных размеров тела. Греческая математика последних столетий до нашей эры освободила теорию вычисления О. от приближённых эмпирических правил. В "Началах" Евклида и в сочинениях Архимеда имеются только точные правила для вычисления О. многогранников и некоторых круглых тел (цилиндра, конуса, шара и их частей). При этом уже в учении об О. многогранников греческой математики должны были преодолеть значительные трудности, существенно отличающие этот отдел геометрии от родственного ему отдела о площадях многоугольников. Источник различия, как выяснилось лишь в начале 20 в., состоит в следующем: в то время как всякий многоугольник можно посредством надлежащих прямолинейных разрезов и перекладывания полученных частей "перекроить" в квадрат, аналогичное преобразование (посредством плоских разрезов) произвольного многогранника в куб оказывается, вообще говоря, невозможным (теорема Дена, 1901). Отсюда становится ясным, почему Евклид уже в случае треугольной пирамиды был вынужден прибегнуть к бесконечному процессу последовательных приближений, пользуясь при доказательстве исчерпывания методом. Бесконечный процесс лежит и в основе современной трактовки измерения О., сводящийся к следующему. Рассматриваются всевозможные многогранники, вписанные в тело К, и всевозможные многогранники, описанные вокруг тела К. Вычисление О. многогранника сводится к вычислению объёмов составляющих его тетраэдров (треугольных пирамид). Пусть {Vi} — числовое множество объёмов, вписанных в тело многогранников, a {Vd} — числовое множество описанных вокруг тела К многогранников. Множество {Vi} ограничено сверху (объёмом любого описанного многогранника), а множество {Vd} ограничено снизу (например, числом нуль). Наименьшее из чисел, ограничивающее сверху множество {Vi}, называется нижним объёмом Vтела К; а наибольшее из чисел, ограничивающее снизу множество {Vd}, называется верхним объёмом тела К. Если верхний объём тела К совпадает с его нижним объёмом V, то число V = = V называется объёмом тела К, а само тело — кубируемым телом. Для того чтобы тело было кубируемым, необходимо и достаточно, чтобы для любого положительного числа e можно было указать такой описанный вокруг тела многогранник и такой вписанный в тело многогранник, разность Vd — Vi объёмов которых была бы меньше e.
Аналитически О. может быть выражен с помощью кратных интегралов. Пусть тело К (рис. 1) ограничено цилиндрической поверхностью с параллельными оси Oz образующими, квадрируемой областью М плоскости Оху и поверхностью z = f (x, у), которую любая параллель к образующей цилиндра пересекает в одной и только в одной точке. Объём такого тела может быть вычислен с помощью двойного интеграла
Объём, одна из основных величин, связанных с геометрическими телами. В простейших случаях измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины.
Задача вычисления О. простейших тел, идущая от практических потребностей, была одним из стимулов развития геометрии. Математика Древнего Востока (Вавилония, Египет) располагала рядом правил (большей частью эмпирических) для вычисления О. тел, с которыми чаще всего приходилось встречаться на практике (например, призматических брусьев, пирамид полных и усечённых, цилиндров). Среди формул О. были и неточные, дававшие не слишком заметную процентную ошибку лишь в пределах употребительных линейных размеров тела. Греческая математика последних столетий до нашей эры освободила теорию вычисления О. от приближённых эмпирических правил. В "Началах" Евклида и в сочинениях Архимеда имеются только точные правила для вычисления О. многогранников и некоторых круглых тел (цилиндра, конуса, шара и их частей). При этом уже в учении об О. многогранников греческой математики должны были преодолеть значительные трудности, существенно отличающие этот отдел геометрии от родственного ему отдела о площадях многоугольников. Источник различия, как выяснилось лишь в начале 20 в., состоит в следующем: в то время как всякий многоугольник можно посредством надлежащих прямолинейных разрезов и перекладывания полученных частей "перекроить" в квадрат, аналогичное преобразование (посредством плоских разрезов) произвольного многогранника в куб оказывается, вообще говоря, невозможным (теорема Дена, 1901). Отсюда становится ясным, почему Евклид уже в случае треугольной пирамиды был вынужден прибегнуть к бесконечному процессу последовательных приближений, пользуясь при доказательстве исчерпывания методом. Бесконечный процесс лежит и в основе современной трактовки измерения О., сводящийся к следующему. Рассматриваются всевозможные многогранники, вписанные в тело К, и всевозможные многогранники, описанные вокруг тела К. Вычисление О. многогранника сводится к вычислению объёмов составляющих его тетраэдров (треугольных пирамид). Пусть {Vi} — числовое множество объёмов, вписанных в тело многогранников, a {Vd} — числовое множество описанных вокруг тела К многогранников. Множество {Vi} ограничено сверху (объёмом любого описанного многогранника), а множество {Vd} ограничено снизу (например, числом нуль). Наименьшее из чисел, ограничивающее сверху множество {Vi}, называется нижним объёмом Vтела К; а наибольшее из чисел, ограничивающее снизу множество {Vd}, называется верхним объёмом тела К. Если верхний объём тела К совпадает с его нижним объёмом V, то число V = = V называется объёмом тела К, а само тело — кубируемым телом. Для того чтобы тело было кубируемым, необходимо и достаточно, чтобы для любого положительного числа e можно было указать такой описанный вокруг тела многогранник и такой вписанный в тело многогранник, разность Vd — Vi объёмов которых была бы меньше e.
Аналитически О. может быть выражен с помощью кратных интегралов. Пусть тело К (рис. 1) ограничено цилиндрической поверхностью с параллельными оси Oz образующими, квадрируемой областью М плоскости Оху и поверхностью z = f (x, у), которую любая параллель к образующей цилиндра пересекает в одной и только в одной точке. Объём такого тела может быть вычислен с помощью двойного интеграла
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: что такое объём
спросили в Объем
Динамометр показывает при взвешивании тела в воздухе 4,3H, а в воде 1.6 H. Определите объем тела. Ответ объясните.
Динамометр показывает разницу между силой тяжести mg и силой, выталкивающей тело из жидкости (закон
подробнее...
Динамометр показывает при взвешивании тела в воздухе 4,3H, а в воде 1.6 H. Определите объем тела. Ответ объясните.
Динамометр показывает разницу между силой тяжести mg и силой, выталкивающей тело из жидкости (закон
подробнее...
кто подскажет.как вычислить вес по объему тела
чем больше объем тела, тем больше вес! НА ВЕСЫ
подробнее...
Вычислить объем тела
Фигура которая вращается представляет собой криволинейный треугольник образованный параболой y=x^2
подробнее...
спросили в Фигура
помогите!!!!Вычислить объем тела,образованного вращением вокруг оси координат фигуры, ограниченной линиями
Строим декартову систему координат на плоскости хОу
На ней строим график x^2/25+y^2/16=1
подробнее...
помогите!!!!Вычислить объем тела,образованного вращением вокруг оси координат фигуры, ограниченной линиями
Строим декартову систему координат на плоскости хОу
На ней строим график x^2/25+y^2/16=1
подробнее...
спросили в Объем
что такое объем через плотность и масса через плотность дать определение
Плотность — масса вещества, заключенная в единице объема.
Масса тела выражается через
подробнее...
что такое объем через плотность и масса через плотность дать определение
Плотность — масса вещества, заключенная в единице объема.
Масса тела выражается через
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:
спросили в Техника
правильно так сказать? вес погруженного в жидкость тела равен весу воды вытесненной телом?
А-бал- деть!!!! Объем тела погруженного в воду вытеснит такой же объем воды. Потом умножить на
подробнее...
правильно так сказать? вес погруженного в жидкость тела равен весу воды вытесненной телом?
А-бал- деть!!!! Объем тела погруженного в воду вытеснит такой же объем воды. Потом умножить на
подробнее...
спросили в Формула 2
Тело весит в воздухе 6Н, а в воде 4Н. Чему равен объём этого тела ?
Все просто. Тело, погруженное в жидкость теряет в весе столько, сколько весит вытесненная им
подробнее...
Тело весит в воздухе 6Н, а в воде 4Н. Чему равен объём этого тела ?
Все просто. Тело, погруженное в жидкость теряет в весе столько, сколько весит вытесненная им
подробнее...
спросили в Другое
как высчитать обьем тела
Мир, в котором мы живем трехгранен. Значит все тела в природе объемны. Объем - физическая величина,
подробнее...
как высчитать обьем тела
Мир, в котором мы живем трехгранен. Значит все тела в природе объемны. Объем - физическая величина,
подробнее...
Как найти объем плавающего тела, зная объем погруженной в жидкость части, а также плотность тела и жидкости?
Выталкивающая сила прямо пропорциональна объему части тела, погруженной в жидкость. Другими
подробнее...
Выталкивающая сила тем больше,чем больше объем погружаемого в нее тела или чем больше плотность жидкости?
Прямая зависимость и от объема тела и от
подробнее...
спросили в Архимед
помогите найти открытие архимеда, как он открыл нахождение объёма тела
АРХИМЕДА ЗАКОН: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная
подробнее...
помогите найти открытие архимеда, как он открыл нахождение объёма тела
АРХИМЕДА ЗАКОН: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная
подробнее...
вес тела в воздухе 100Н,а в воде 60 найти плотность тела
если P(вохдух) = 100Н то m = P/g = 100Н/9.8м/с^2 = 10 кг
Теперь для плотности тела надо найти
подробнее...
Как найти объём и плотность своего тела?
Объём можно найти методом Архимеда: погрузиться в ванну с головой, и пусть мама дорогая сделает
подробнее...