дружественные числа



220 и 284 дружественные числа

Автор For_efel задал вопрос в разделе Золотой фонд

Почему числа 220 и 284 называются дружественными? и получил лучший ответ

Ответ от Emme35[гуру]
Дружественные числа — два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и сумма всех делителей второго числа (кроме него самого) равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Обычно же, говоря о дружественных числах, имеют в виду пары из двух разных чисел.
Дружественные числа были открыты последователями Пифагора. Правда пифагорейцы знали только одну пару дружественных чисел — 220 и 284. Только спустя много столетий Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.
Формулу, дающую 3 пары дружественных чисел, открыл около 850 арабский астроном и математик Табит ибн Кура (826—901):
где n > 1 — натуральное число, а — простые числа, то 2npq и 2nr — пара дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и (9363584, 9437056) соответственно для, но больше никаких пар дружественных чисел для n < 20000. Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по формуле.
На ноябрь 2006 известно 11 446 960 пар дружественых чисел. Все они состоят из двух чётных или двух нечётных чисел. Есть ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, их произведение должно быть больше 1067.
Ниже приведены все пары дружественных чисел, меньших 100 000.
220 и 284 (Пифагор, около 500 до н. э. )
1184 и 1210 (Паганини, 1860)
2620 и 2924 (Эйлер, 1747)
5020 и 5564 (Эйлер, 1747)
6232 и 6368 (Эйлер, 1750)
10744 и 10856 (Эйлер, 1747)
12285 и 14595 (Браун, 1939)
17296 и 18416 (Аль-Банна, около 1300, Фариси, около 1300, Ферма, 1636)
63020 и 76084 (Эйлер, 1747)
66928 и 66992 (Эйлер, 1750)
67095 и 71145 (Эйлер, 1747)
69615 и 87663 (Эйлер, 1747)
79750 и 88730 (Рольф (Rolf), 1964)
Источник:

Ответ от Ђатьяна Смоленова[эксперт]
Пифагор открыл то, что он называл дружественными числами или «вторыми я» чисел, представляющие собой суммы всех делителей, отличных от самого числа. Все делители числа 284, то есть 1, 2, 4, 71 и 142, в сумме дают 220; все делители числа 220, то есть 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, в сумме дают 284.

Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Почему числа 220 и 284 называются дружественными?

Что такое дружественные числа
Дру́жественные чи́сла — два натуральных числа́, для которых сумма всех делителей
подробнее...

Не могу предумать! Помогите!! Сказка про математику!
Как три вектора один детерминант в нуль обратили
Народная сказка

Как идут две
подробнее...
Дружественные числа на Википедии
Посмотрите статью на википедии про Дружественные числа
 

Ответить на вопрос:

Имя*

E-mail:*

Текст ответа:*
Проверочный код(введите 22):*