как найти наибольший общий делитель



Как найти наибольший общий делитель двух чисел

Автор Аронов Владислав задал вопрос в разделе Школы

Подскажите как найти наибольший общий делитель нескольких натуральных чисел ((6 класс)) и получил лучший ответ

Ответ от Анатолий Бежин[активный]
чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:
1)разложить их на простые множители;
2)выписать те множители, которые входят в разложение каждого из чисел;
3)найти произведение этих множителей.
Примеры:
а) найти НОД (6600; 6300):
6600 = 2 • 2 • 2 • 3 • 5 • 5 • 11,
6300 = 2 • 2 • 3 • 3 • 5 • 5 • 7,
НОД (6600; 6300) = 2 • 2 • 3 • 5 • 5 = 300;
б) найти НОД (34 398; 1260; 6552):
34 398 - 2 • 3 • 3 • 3 • 7 • 7 • 13,
1260 = 2 • 2 • 3 • 3 • 5 • 7,
6562 = 2 • 2 • 2 • 3 • 3 • 7 • 13,
НОД (34 398; 1260; 6652) = 2 • 3 • 3 • 7 = 126.
При нахождении наибольшего общего делителя двух чисел полезно знать еще одно правило, называемое «алгоритмом Евклида» .
Пример. Найти НОД (270; 186). Разделим 270 на 186 с остатком:
270 : 186 = 1 (ост. 84). Далее разделим делитель на остаток и т. д. : 186 : 84 = 2 (ост. 18), 84 : 18 = 4 (ост. 12), 18 : 12 = 1 (ост. 6), 12 : 6 = 2 (ост. 0).
Наибольшим общим делителем чисел 270 и 186 является последний ненулевой остаток, т. е. число 6.
Пример. Найти НОД (234; 180).
1)234 : 180 = 1 (ост. 54),
2)180: 54 = 3 (ост. 18),
3)54 : 18 = 3 (ост. 0). Следовательно, НОД (234; 180) = 18.
Натуральные числа называют взаимно простыми, если их наибольший общий делитель равен единице.
Примеры:
а) 75 и 14 — взаимно простые числа, так как НОД (75; 14)= 1;
б) 20, 9 и 77 взаимно простые числа, так как НОД (20; 9; 77) = 1.
Источник: http://shpargalka.kz/matematika/naibolshii-obshii-delitel

Ответ от *DAN*[эксперт]
Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей. Пример: для чисел 70 и 105 наибольший общий делитель равен 35.
Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не ноль.
Возможные обозначения наибольшего общего делителя чисел m и n:
НОД (m, n)
(m, n)
gcd(m, n) (от англ. Greatest Common Divisor)
hcf(m, n) (от брит. англ. Highest Common Factor)
Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм.
Кроме того, значение НОД (m,n) можно легко вычислить, если известно каноническое разложение чисел m, n на простые множители:
n=p_1^{d_1}cdotdotscdot p_k^{d_k},
m=p_1^{e_1}cdot dots cdot p_k^{e_k},
где p_1,dots,p_k — различные простые числа, а d_1,dots,d_k и e_1,dots,e_k — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД (m,n) и НОК (m,n) выражаются формулами:
(n,m)=p_1^{min(d_1,e_1)}cdotdotscdot p_k^{min(d_k,e_k)},
[n,m]=p_1^{max(d_1,e_1)}cdotdotscdot p_k^{max(d_k,e_k)}.
Если чисел более двух: a_1, a_2,dots a_n, их НОД находится по следующему алгоритму:
d_2=(a_1, a_2)
d_3=(d_2, a_3)
………
d_n=(d_{n-1}, a_n) — это и есть искомый НОД.

Ответ от Денис Билокрилец[новичек]
чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:
1)разложить их на простые множители;
2)выписать те множители, которые входят в разложение каждого из чисел;
3)найти произведение этих множителей.
Примеры:
а) найти НОД (6600; 6300):
6600 = 2 • 2 • 2 • 3 • 5 • 5 • 11,
6300 = 2 • 2 • 3 • 3 • 5 • 5 • 7,
НОД (6600; 6300) = 2 • 2 • 3 • 5 • 5 = 300;
б) найти НОД (34 398; 1260; 6552):
34 398 - 2 • 3 • 3 • 3 • 7 • 7 • 13,
1260 = 2 • 2 • 3 • 3 • 5 • 7,
6562 = 2 • 2 • 2 • 3 • 3 • 7 • 13,
НОД (34 398; 1260; 6652) = 2 • 3 • 3 • 7 = 126.
При нахождении наибольшего общего делителя двух чисел полезно знать еще одно правило, называемое «алгоритмом Евклида».
Пример. Найти НОД (270; 186). Разделим 270 на 186 с остатком:
270 : 186 = 1 (ост. 84). Далее разделим делитель на остаток и т. д. : 186 : 84 = 2 (ост. 18), 84 : 18 = 4 (ост. 12), 18 : 12 = 1 (ост. 6), 12 : 6 = 2 (ост. 0).
Наибольшим общим делителем чисел 270 и 186 является последний ненулевой остаток, т. е. число 6.
Пример. Найти НОД (234; 180).
1)234 : 180 = 1 (ост. 54),
2)180: 54 = 3 (ост. 18),
3)54 : 18 = 3 (ост. 0). Следовательно, НОД (234; 180) = 18.
Натуральные числа называют взаимно простыми, если их наибольший общий делитель равен единице.
Примеры:
а) 75 и 14 — взаимно простые числа, так как НОД (75; 14)= 1;
б) 20, 9 и 77 взаимно простые числа, так как НОД (20; 9; 77) = 1.

Ответ от Кристина Анисимова[новичек]
Примеры:
а) найти НОД (6600; 6300):
6600 = 2 • 2 • 2 • 3 • 5 • 5 • 11,
6300 = 2 • 2 • 3 • 3 • 5 • 5 • 7,
НОД (6600; 6300) = 2 • 2 • 3 • 5 • 5 = 300;
б) найти НОД (34 398; 1260; 6552):
34 398 - 2 • 3 • 3 • 3 • 7 • 7 • 13,
1260 = 2 • 2 • 3 • 3 • 5 • 7,
6562 = 2 • 2 • 2 • 3 • 3 • 7 • 13,
НОД (34 398; 1260; 6652) = 2 • 3 • 3 • 7 = 126.
При нахождении наибольшего общего делителя двух чисел полезно знать еще одно правило, называемое «алгоритмом Евклида».
Пример. Найти НОД (270; 186). Разделим 270 на 186 с остатком:
270 : 186 = 1 (ост. 84). Далее разделим делитель на остаток и т. д. : 186 : 84 = 2 (ост. 18), 84 : 18 = 4 (ост. 12), 18 : 12 = 1 (ост. 6), 12 : 6 = 2 (ост. 0).
Наибольшим общим делителем чисел 270 и 186 является последний ненулевой остаток, т. е. число 6.
Пример. Найти НОД (234; 180).
1)234 : 180 = 1 (ост. 54),
2)180: 54 = 3 (ост. 18),
3)54 : 18 = 3 (ост. 0). Следовательно, НОД (234; 180) = 18.
Натуральные числа называют взаимно простыми, если их наибольший общий делитель равен единице.
Примеры:
а) 75 и 14 — взаимно простые числа, так как НОД (75; 14)= 1;
б) 20, 9 и 77 взаимно простые числа, так как НОД (20; 9; 77) = 1.

Ответ от Галина Донченко[новичек]
Вычислите наибольший общий делитель чисел 77164189341682084692124351766096496451364840671846455244761 и
46668734283684548617206823665104829826096872771679324943689.

Ответ от Артём Булгаков[активный]
разложить на простые множители

Ответ от Егор Пашон[новичек]
чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:
1)разложить их на простые множители;
2)выписать те множители, которые входят в разложение каждого из чисел;
3)найти произведение этих множителей.
Примеры:
а) найти НОД (6600; 6300):
6600 = 2 • 2 • 2 • 3 • 5 • 5 • 11,
6300 = 2 • 2 • 3 • 3 • 5 • 5 • 7,
НОД (6600; 6300) = 2 • 2 • 3 • 5 • 5 = 300;
б) найти НОД (34 398; 1260; 6552):
34 398 - 2 • 3 • 3 • 3 • 7 • 7 • 13,
1260 = 2 • 2 • 3 • 3 • 5 • 7,
6562 = 2 • 2 • 2 • 3 • 3 • 7 • 13,
НОД (34 398; 1260; 6652) = 2 • 3 • 3 • 7 = 126.
При нахождении наибольшего общего делителя двух чисел полезно знать еще одно правило, называемое «алгоритмом Евклида» .
Пример. Найти НОД (270; 186). Разделим 270 на 186 с остатком:
270 : 186 = 1 (ост. 84). Далее разделим делитель на остаток и т. д. : 186 : 84 = 2 (ост. 18), 84 : 18 = 4 (ост. 12), 18 : 12 = 1 (ост. 6), 12 : 6 = 2 (ост. 0).
Наибольшим общим делителем чисел 270 и 186 является последний ненулевой остаток, т. е. число 6.
Пример. Найти НОД (234; 180).
1)234 : 180 = 1 (ост. 54),
2)180: 54 = 3 (ост. 18),
3)54 : 18 = 3 (ост. 0). Следовательно, НОД (234; 180) = 18.
Натуральные числа называют взаимно простыми, если их наибольший общий делитель равен единице.
Примеры:
а) 75 и 14 — взаимно простые числа, так как НОД (75; 14)= 1;
б) 20, 9 и 77 взаимно простые числа, так как НОД (20; 9; 77) = 1.

Ответ от Александр Сергеев[новичек]
...

Ответ от Даша Маньковская[новичек]
ххх

Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Подскажите как найти наибольший общий делитель нескольких натуральных чисел ((6 класс))

Что такое наименьший общий делитель?
Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих
подробнее...

как найти НОД числа? я забыла) а брату нужно
НОД у ОДНОГО числа быть не может. Для того, чтобы найти НОД, нужно как минимум ДВА числа (или
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:

Что такое делители и кратные?
делитель, это число - на которое мы делим. 132 : 11 = 12. 11 - делитель. Кратные - числа, на
подробнее...

Как найти наибольший общий делитель (НОД) двух многочленов?
Здравствуйте, Алексей Медведев !

Вспомним сначала о разложении многочлена на простые
подробнее...

Что такое понятие алгоритма и свойства алгоритма?
Алгоритм -- одно из основных математических понятий. Однако с алгоритмами человеку приходится иметь
подробнее...
Алгоритм Евклида на Википедии
Посмотрите статью на википедии про Алгоритм Евклида
Наибольший общий делитель на Википедии
Посмотрите статью на википедии про Наибольший общий делитель
 

Ответить на вопрос:

Имя*

E-mail:*

Текст ответа:*
Проверочный код(введите 22):*