Автор Анна Петрова задал вопрос в разделе Домашние задания
Сколько существует трехзначных чисел, которые в 5 раз больше произведения своих чисел? и получил лучший ответ
Ответ от D Smolin[гуру]
Одно число = 175. Уже отвечали
Ответ от Андрей[гуру]
Если число в 5 раз больше, то оно оканчивается либо на 0, либо на 5. Но 0 быть не может ни в одной позиции (иначе произведение равно 0 и условие не выполняется) . Таким образом получаем числа вида XY5, т. е. X*100+Y*10+5, где X и Y могут принимать значения от 1 до 9.
Из условия задачи: X*100+Y*10+5=5*(X*Y*5) => X*20+Y*2+1 = 5*X*Y.
Левая часть всегда нечётная, следовательно правая часть всегда оканчивается на 5 и, следовательно, X и Y не могут быть чётными.
Но левая часть оканчивается на 5 только при (Y*2+1)=5 => Y=1, или (Y*2+1)=15 => Y=7.
Пусть Y=1. Получаем: 20*X+2*1+1=5*X*1 => 20*X+5=5*X => 3*X=-1 => X не является целым числом.
Пусть Y=7. Получаем: 20*X+2*7+1=5*X*7 => 20*X+15=35*X => X=1 => ответ: 175.
Ответ: одно число 175.
Если число в 5 раз больше, то оно оканчивается либо на 0, либо на 5. Но 0 быть не может ни в одной позиции (иначе произведение равно 0 и условие не выполняется) . Таким образом получаем числа вида XY5, т. е. X*100+Y*10+5, где X и Y могут принимать значения от 1 до 9.
Из условия задачи: X*100+Y*10+5=5*(X*Y*5) => X*20+Y*2+1 = 5*X*Y.
Левая часть всегда нечётная, следовательно правая часть всегда оканчивается на 5 и, следовательно, X и Y не могут быть чётными.
Но левая часть оканчивается на 5 только при (Y*2+1)=5 => Y=1, или (Y*2+1)=15 => Y=7.
Пусть Y=1. Получаем: 20*X+2*1+1=5*X*1 => 20*X+5=5*X => 3*X=-1 => X не является целым числом.
Пусть Y=7. Получаем: 20*X+2*7+1=5*X*7 => 20*X+15=35*X => X=1 => ответ: 175.
Ответ: одно число 175.
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Сколько существует трехзначных чисел, которые в 5 раз больше произведения своих чисел?
спросили в Техника
Количество комбинаций из трех чисел
Вопрос - сколько существует трехзначных чисел с различными цифрами?
Ответ: произвольный набор
подробнее...
Количество комбинаций из трех чисел
Вопрос - сколько существует трехзначных чисел с различными цифрами?
Ответ: произвольный набор
подробнее...
спросили в Котор
Сколько существует натуральных трехзначных чисел, которые делятся только на одно из чисел 4 или 5?
Именно 315.
На 4 делятся 900/4=225 чисел
На 5 делятся 900/5=180 чисел
На 4 и 5 делятся
подробнее...
Сколько существует натуральных трехзначных чисел, которые делятся только на одно из чисел 4 или 5?
Именно 315.
На 4 делятся 900/4=225 чисел
На 5 делятся 900/5=180 чисел
На 4 и 5 делятся
подробнее...
математика срочно. сколько существует натуральных трехзначных чисел которые делятся только на одно из чисел 4 или 5
На 4 делятся: 100, 104, 108, ..996 - всего 225 чисел;
на 5: 100, 105, 110, ..995 - всего 180;
подробнее...
сколько существует четных трехзначных чисел?
Привет!
А я не согласен с предыдущим ответом.
Правильный ответ-решение:
какие такие
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:
Сколько существует натуральных трехзначных чисел, которые делятся только на одно из чисел 5 или 6?
Натуральные трехзначные числа - это числа от 100 до 999. Их 999-100=899 штук. Каждое пятое, начиная
подробнее...
спросили в Котор
Сколько существует трехзначных чисел от 100 до 999, у которых первая и последняя цифра различаются на единицу
от 100 до 999
102,
203,
304,
405,
506,
607,
708,
809,
908,
подробнее...
Сколько существует трехзначных чисел от 100 до 999, у которых первая и последняя цифра различаются на единицу
от 100 до 999
102,
203,
304,
405,
506,
607,
708,
809,
908,
подробнее...