интеграл ctg 4 x



Автор Алмаз задал вопрос в разделе Домашние задания

интеграл ctg^4 (5x) dx=? и получил лучший ответ

Ответ от Катёнок[эксперт]
=интcos^4(5x)/sin^4(5x) dx=инт (1-sin^2(5x))^2*cos(5x)/sin^4(5x) dx= замена sin(5x)=t, 5cos(5x)dx=dt =1/5 инт (1-t^2)^2/t^4 dt= 1/5 инт (1-2t^2+t^4)/t^4 dt=делим почленно=1/5 инт (1/t^4 -2/t^2 +1) dt= 1/5(1/(-3t^3)+2/(t)+t) +C=1/5(-1/(3sin^3(5x))+2/sin(5x)+sin(5x))+C

Ответ от Sds sad[гуру]
Вот так 5x под dx вносишь :ctg(5x)dx = 1/5 ctg (5x)d(5x) В конце получиться такой ответ: (ctg(5x)/5) - ((ctg^3(5x))/15) + x + const

Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: интеграл ctg^4 (5x) dx=?

интеграл dx/(cosx)^4 желательно решить методом частной подстановки заранее огромное спасибо
тут вроде получится бысто если сделать замену переменной t=tg(x) или ctg(x) пробуй!
внатуре
подробнее...

помогите плис решить
1. Разбейте подынтегральную функцию на 3 дроби - получите 3 интеграла. Сократите в них числитель со
подробнее...
Список обозначений в физике на Википедии
Посмотрите статью на википедии про Список обозначений в физике
 

Ответить на вопрос:

Имя*

E-mail:*

Текст ответа:*
Проверочный код(введите 22):*