Наибольшее и наименьшее значение функции
Автор Ѐуслан Джуманиязов задал вопрос в разделе Домашние задания
Как найти наибольшее и наименьшее значение функции на интервале? 8 класс и получил лучший ответ
Ответ от ?????????????[эксперт]
Наибольшее и наименьшее значение функции.
С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.
Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком формула, открытым интервалом формула, бесконечным промежутком формула.
В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).
Навигация по странице.
Наибольшее и наименьшее значение функции - определения, иллюстрации.
Нахождение наибольшего и наименьшего значения функции на отрезке [a;b].
Нахождение наибольшего и наименьшего значения функции на открытом или бесконечном интервале X.
Наибольшее и наименьшее значение функции - определения, иллюстрации.
Кратко остановимся на основных определениях.
Наибольшим значением функции y=f(x) на промежутке X называют такое значение формула, что для любого формула справедливо неравенство формула.
Наименьшим значением функции y=f(x) на промежутке X называют такое значение формула, что для любого формула справедливо неравенство формула.
Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе формула.
Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.
Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.
Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.
Сразу ответим на один из самых распространенных вопросов по этой теме: "Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.
Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.
На отрезке
изображение
На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка [-6;6].
Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на [1;6]. В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.
На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.
На открытом интервале
изображение
На четвертом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри открытого интервала (-6;6).
На интервале [1;6) наименьшее значение
Это наибольшее и наименьшее значения y, при наибольшем и наименьшем значениях x, принадлежащих этому интервалу. Например, y наибольшее и наименьшее значения функции y=vx при промежутке [1; 5)
yнаиб. =2, yнаим. =1. Чаще всего вычисляется по графику.
если коротко, то на концах отрезка и в точках экстремума
найдите сумму наибольшего и наименьшего значения функции у=2х^2-8х-4 на отрезке [0;3]
Чтобы найти наибольшее и наименьшее значения функции на отрезке, нужно вычислить значения на концах
подробнее...
алгоритм нахождения наибольшего и наименьшего значения функции на закрытом отрезке; и на интервале
На отрезке.
1) найти значения функции на концах отрезка;
2) найти производную функции,
подробнее...
Найти наибольшее и наименьшее значение функции двух переменных в заданной области. z=x^3+y^3-3xy o<=x<=2 0<=y<=3
экстремумы могут достигаться или внутри области или на границе
экстремум непрерывной функции
подробнее...
подскажите пожалуйста одну вещь (наибольшее и наименьшее значение функции)
для нахождения значений подставляем в исходную функцию
а что имеется в виду под + и - не
подробнее...
Как определить наименьшее и наибольшее значение функции по графику?
Наибольшее и наименьшее значение функции ищет по оси игрика, Т. е. по вертикальной прямой.
подробнее...
исследовать функцию на экстремумы
Cуществует стандартный алгоритм нахожения мин. и мах значений функции на интервале. Чему вас только
подробнее...
как найти минимум функции?? какой порядок действий должен быть??? помогите плиз!
Находим производную функции
Приравниваем эту производную к нулю
Находим значения
подробнее...
Пожалуйста, люди, объясните ПОНЯТНО, что такое производная функции и зачем она нужна!!!
производная - скорость изменения функции
т. е. например при помощи нее ты можешь найти
подробнее...
Функция y=k/x её свойства и график
у =к/х - наз. обратной пропорциональностью. Графиком является гипербола.
1. При к больше 0
подробнее...
как найти наиб. и наим. значение функции y=(x+2)это выражение в 4 степени,-2 на отрезке [-1;4]????77
Вообще с функциями работают через производную:
производную приравниваем к нулю, где
подробнее...
найти наибольшее значение функции)) у = ln (x+5)^5 - 5 x на отрезке [ - 4,5 ; 0 ]
Наибольшего и наименьшего значения на отрезке функция достигает либо в критической точке,
подробнее...
В чем заключается разница: между нахождением - xmax и xmin, и наиб. наим. значений функции?
xmax и xmin - это значения х при которых функция приобретет наибольшее и наименьшее значение
подробнее...
объясните "на пальцах" что такое минимум функции на примерах на житейском языке спасибо всем
1) В системе координат отметьте точку А ( 3; -2) Из этой точки начерти параболу ветвями вверх.
подробнее...
Что такое экстремизм Если перепост какой - нибудь - и, ..
экстремизм 1
ЭКСТРЕМУМ (лат. extrеmum «крайнее» ) — общее название наибольшего и наименьшего
подробнее...
функция y = 10x что за функция
Линейная функция
Ключевые слова: функция, линейная функция, прямая линия, угловой
подробнее...