Как точка пересечения медиан делит их
Автор Давидушка Блэйн задал вопрос в разделе Техника
Как доказать, что медианы треугольника пересекаются в одной точке? и получил лучший ответ
Ответ от CCCР[гуру]
Очень просто. Докажите, что две медианны делятся точкой пересечения в отношении 1:2. Тогда и стретьей тоже все будет понятно. А как это доказать? Еще проще - подсказываю - вспомнить теорму Фалеса и св-ва подобных тр-ков. Всё.
Ответ от Leonid[гуру]
Нарисовать две медианы, провести через точку их пересечения третью линию и доказать, что она - тоже медиана.
Нарисовать две медианы, провести через точку их пересечения третью линию и доказать, что она - тоже медиана.
Ответ от Жидкий Змей[гуру]
Если пересекаются, значит есть общий угол...
Если пересекаются, значит есть общий угол...
Ответ от Ѐозовая Блондинка[активный]
Теорема
Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.
Доказательство
Обозначим буквой О точку пересечения двух медиан АА1 и ВВ1 треугольника АВС и проведём среднюю линию А1В1 этого треугольника (рис. 1). Отрезок А1В1 параллелен стороне АВ (по теореме о средней линии треугольника) , поэтому 1= 2 и 3= 4. Следовательно, треугольники АОВ и А1ОВ подобны по двум углам, и, значит их стороны пропорциональны, т. е. равны отношения сторон АО и А1О, ВО и В1О, АВ и А1В. Но АВ=2А1В1, поэтому АО=2А1О и ВО=2В1О. Таким образом, точка О пересечения медиан ВВ1 и СС1 делит каждую из них в отношении2:1, считая от вершины. Теорема доказана.
Теорема
Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.
Доказательство
Обозначим буквой О точку пересечения двух медиан АА1 и ВВ1 треугольника АВС и проведём среднюю линию А1В1 этого треугольника (рис. 1). Отрезок А1В1 параллелен стороне АВ (по теореме о средней линии треугольника) , поэтому 1= 2 и 3= 4. Следовательно, треугольники АОВ и А1ОВ подобны по двум углам, и, значит их стороны пропорциональны, т. е. равны отношения сторон АО и А1О, ВО и В1О, АВ и А1В. Но АВ=2А1В1, поэтому АО=2А1О и ВО=2В1О. Таким образом, точка О пересечения медиан ВВ1 и СС1 делит каждую из них в отношении2:1, считая от вершины. Теорема доказана.
Ответ от Маргарита Маенкова[мастер]
учебник Атанасян 7 глава параграф 3 содержит подробное доказательство.
учебник Атанасян 7 глава параграф 3 содержит подробное доказательство.
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Как доказать, что медианы треугольника пересекаются в одной точке?
Как найти центр тяжести прямоугольного треугольника аналитически?
1. Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношениии 2:1, начиная
подробнее...
как правильно вписать окружность в треугольник ?
нарисовать срединные перпендикуляры.. ой, это для описанной снаружи. . (неверное прочитала условие
подробнее...
Помогите решить плиииззз
Из вершинв А опустим на плоскость ( ВДС) перпендикуляр АО. Так как тетраэдр ABCD правильный, то
подробнее...
пожалуйста ответьте на что сможете 1) Ромб (определение, свойства, площадь) 2)Третий признак подобия треугольков
1) это четырёхугольник, у которого все стороны равны. Ромб является параллелограммом. Ромб с
подробнее...
Прошу помощи в решении! Задача по геометрии, однозначно решение идёт из свойств медиан, но что-то я догнать не могу.
Начерти все это. Так как КМ соединяет середины сторон, то КМ || АВ. К тому же углы АОВ и МОК равны,
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:
Как начертить медиану и высоту треугольника с помощью циркуля ?
Постройте треугольник ABC. Пусть необходимо провести медиану из вершины С к стороне AB.
подробнее...
как вписать в правильный шестиугольник окружность?
Центр вписанной окружности находится в точке, являющейся пересечением биссектрис внутренних углов
подробнее...
Помогите с ГЕОМЕТРИЕЙ 11 класс. Тема: ПИРАМИДА
1. В правильной треугольной пирамиде основанием высоты является точка пересечения медиан основания.
подробнее...
Найдите углы данного равнобедренного треугольника.
Одной из основ геометрии является нахождение биссектрисы, луча, делящего угол пополам. Биссектриса
подробнее...