Автор Ingvarr $ задал вопрос в разделе Школы
Графики движения двух тел представлены на рисунке 10. Написать уравнения движения X — x(t). и получил лучший ответ
Ответ от Flash[гуру]
1-ое тело Х = t/2 + 20
2: X = t - 20.
Пересечение с ОХ - начальная координата (20 и -20);
с осью Оt - для первого тела не имеет физического смысла (время отрицательно) , для 2-го тела - время, когда расстояние стало 0 (время равно 5).
Точка пересечения самих графиков - момент их встречи, время = 20 с, расстояние +60м.
Ответ от Ёталин[гуру]
А что здесь помогать?
Тела движутся равномерно, одно быстрее, другое медленнее
В точке пересечения они прошли одинаковое расстояние за одинаковое время.. Это не значит, что встретились. .
Задача для пятиклассника, который чуть умнее дебила и знает, что такое прямая пропорциональность. .
Ну или учебник открывал, хоть пару раз. .
Точки пересечения с осями координат означают начало измерения времени и расстояния.
А что здесь помогать?
Тела движутся равномерно, одно быстрее, другое медленнее
В точке пересечения они прошли одинаковое расстояние за одинаковое время.. Это не значит, что встретились. .
Задача для пятиклассника, который чуть умнее дебила и знает, что такое прямая пропорциональность. .
Ну или учебник открывал, хоть пару раз. .
Точки пересечения с осями координат означают начало измерения времени и расстояния.
Ответ от 3 ответа[гуру]
Привет! Вот подборка тем с ответами на Ваш вопрос: Графики движения двух тел представлены на рисунке 10. Написать уравнения движения X — x(t).
Материальная точка движется прямолинейно по закону x(t)=3t^3-2t^2+4t
x(t)=3t³-2t²+4t
v(t)=x\'(t)
v(t)=9t²-4t+4
подробнее...
Преобразование выражения asinx+bcosx к виду c sin(x +t).
Пользуемся формулой:
sin(x+t)=sin(x)*cos(t)+cos(x)*sin(t)
Из исходного
подробнее...
помогите решить, пожалуйста!! вычислить значение производной сложной функции: u=ln(e^x+e^y), где x=t^2, y=t^3, при t=1
Ответ. u(x,y)=ln(e^x+e^y), где x(t)=t^2, y(t)=t^3, при t=1; u(t)=ln(e^(t^2)+e^(t^3)),
подробнее...
Как решить уравнение: x^4 - x^3 - 10x^2 + 2x + 4 = 0. Заранее большое спасибо!
x⁴ - x³ - 10x² + 2x + 4 = 0
Это уравнение возвратное, делим обе части на
подробнее...
Ответ от 3 ответа[гуру]
Привет! Вот еще темы с похожими вопросами:
спросили в X COM
как решить? 2 sin в квадрате x + 3 cos x= 0
2*Sin^2(x) + 3*Cos(x) = 0
2*(1 - Cos^2(x)) + 3*Cos(x) = 0
2 - 2*Cos^2(x) + 3*Cos(x) = 0 /
подробнее...
как решить? 2 sin в квадрате x + 3 cos x= 0
2*Sin^2(x) + 3*Cos(x) = 0
2*(1 - Cos^2(x)) + 3*Cos(x) = 0
2 - 2*Cos^2(x) + 3*Cos(x) = 0 /
подробнее...
спросили в X COM
Интеграл: arctg x / (1+x^2)
Интеграл: arctg x / (1+x^2) dx= замена : arctg x =t; dx/ (1+x^2) =dt =
=Интеграл: t dt=
подробнее...
Интеграл: arctg x / (1+x^2)
Интеграл: arctg x / (1+x^2) dx= замена : arctg x =t; dx/ (1+x^2) =dt =
=Интеграл: t dt=
подробнее...
Помогите решить! ) Нужно само решение. lim (x стремится к - бесконечности) = x*sin1/x
вот
1/x=t. При х стремящемся к бесконечности t стремится к нулю. Исходное выражение принимиает
подробнее...
спросили в Korn Симанские
Помогите пожалуйста. найти интеграл от arctg корень из x
Вот: замена t=koren(x), тогда x=t^2, dx=2t dt; теперь по частям:
int
подробнее...
Помогите пожалуйста. найти интеграл от arctg корень из x
Вот: замена t=koren(x), тогда x=t^2, dx=2t dt; теперь по частям:
int
подробнее...
Помогите решить уравнение : 3 ^ x +8 * 3 ^ -x >=9
ЭТО НЕ УРАВНЕНИЕ!
ЭТО НЕРАВЕНСТВО!!
3 ^( x)= t >0
t+8/t >=9
подробнее...
вычислить интеграл. E^SQRT(X) (е в степени корень квадратный из Х)
делаем замену t=sqrt x x=t^2
Int e^t dt^2= 2 Int t e^t dt = 2 {Int t d(e^t)}=2 {t * e^t - Int
подробнее...
помогите пожалуйста решить xy' sin (y/x)+x=y sin(y/x)
xy'sin(y/x)+x=y*sin(y/x)
(xy'-y)sin(y/x)+x=0
Замена: t=y/x
dt/dx=(xy'-y)/x²
подробнее...
1-cos(П-x)-sin(П/2+x/2)=0
Элементарно, Ватсон:
cos(pi - x) = - cos x
sin(pi/2 + x/2) = cos x/2 = cos^2 x -
подробнее...
как решить тригонометрическое уравнение sin x-cos x+ sin 2x+1=0
Замена: пусть sin x-cos x=t
Тогда: (sin x-cos x)^2=t^2
1-2sinx cosx=t^2, т. е.
подробнее...